Matches in SemOpenAlex for { <https://semopenalex.org/work/W4377013714> ?p ?o ?g. }
- W4377013714 abstract "Quantum Annealing (QA) is one of the most promising frameworks for quantum optimization. Here, we focus on the problem of minimizing complex classical cost functions associated with prototypical discrete neural networks, specifically the paradigmatic Hopfield model and binary perceptron. We show that the adiabatic time evolution of QA can be efficiently represented as a suitable Tensor Network. This representation allows for simple classical simulations, well-beyond small sizes amenable to exact diagonalization techniques. We show that the optimized state, expressed as a Matrix Product State (MPS), can be recast into a Quantum Circuit, whose depth scales only linearly with the system size and quadratically with the MPS bond dimension. This may represent a valuable starting point allowing for further circuit optimization on near-term quantum devices." @default.
- W4377013714 created "2023-05-19" @default.
- W4377013714 creator A5021943862 @default.
- W4377013714 creator A5028908129 @default.
- W4377013714 creator A5029954873 @default.
- W4377013714 creator A5052199063 @default.
- W4377013714 date "2023-05-17" @default.
- W4377013714 modified "2023-10-01" @default.
- W4377013714 title "Quantum annealing for neural network optimization problems: A new approach via tensor network simulations" @default.
- W4377013714 cites W1974645033 @default.
- W4377013714 cites W1983624953 @default.
- W4377013714 cites W2003656163 @default.
- W4377013714 cites W2007473024 @default.
- W4377013714 cites W2024860775 @default.
- W4377013714 cites W2028918948 @default.
- W4377013714 cites W2033498477 @default.
- W4377013714 cites W2033606703 @default.
- W4377013714 cites W2036604884 @default.
- W4377013714 cites W2039122980 @default.
- W4377013714 cites W2040797887 @default.
- W4377013714 cites W2043014754 @default.
- W4377013714 cites W2062247903 @default.
- W4377013714 cites W2068500008 @default.
- W4377013714 cites W2069129925 @default.
- W4377013714 cites W2069523531 @default.
- W4377013714 cites W2070784404 @default.
- W4377013714 cites W2076112183 @default.
- W4377013714 cites W2082946462 @default.
- W4377013714 cites W2105614108 @default.
- W4377013714 cites W2128084896 @default.
- W4377013714 cites W2203542361 @default.
- W4377013714 cites W2564229214 @default.
- W4377013714 cites W2710900611 @default.
- W4377013714 cites W2753545915 @default.
- W4377013714 cites W2885319201 @default.
- W4377013714 cites W2951211905 @default.
- W4377013714 cites W2963198496 @default.
- W4377013714 cites W2965088710 @default.
- W4377013714 cites W2971809227 @default.
- W4377013714 cites W2990961515 @default.
- W4377013714 cites W3098571064 @default.
- W4377013714 cites W3100056737 @default.
- W4377013714 cites W3100133284 @default.
- W4377013714 cites W3100894865 @default.
- W4377013714 cites W3101479050 @default.
- W4377013714 cites W3103196307 @default.
- W4377013714 cites W3103713775 @default.
- W4377013714 cites W3119402126 @default.
- W4377013714 cites W3126720815 @default.
- W4377013714 cites W3135926897 @default.
- W4377013714 cites W3167172260 @default.
- W4377013714 cites W3178793164 @default.
- W4377013714 cites W3189250281 @default.
- W4377013714 cites W3209211804 @default.
- W4377013714 cites W3213462016 @default.
- W4377013714 cites W4232220759 @default.
- W4377013714 cites W4241400578 @default.
- W4377013714 cites W4284963661 @default.
- W4377013714 cites W4289334409 @default.
- W4377013714 cites W4297779625 @default.
- W4377013714 cites W4298069009 @default.
- W4377013714 cites W4322767298 @default.
- W4377013714 cites W579669452 @default.
- W4377013714 doi "https://doi.org/10.21468/scipostphys.14.5.117" @default.
- W4377013714 hasPublicationYear "2023" @default.
- W4377013714 type Work @default.
- W4377013714 citedByCount "1" @default.
- W4377013714 countsByYear W43770137142023 @default.
- W4377013714 crossrefType "journal-article" @default.
- W4377013714 hasAuthorship W4377013714A5021943862 @default.
- W4377013714 hasAuthorship W4377013714A5028908129 @default.
- W4377013714 hasAuthorship W4377013714A5029954873 @default.
- W4377013714 hasAuthorship W4377013714A5052199063 @default.
- W4377013714 hasBestOaLocation W43770137141 @default.
- W4377013714 hasConcept C11413529 @default.
- W4377013714 hasConcept C121332964 @default.
- W4377013714 hasConcept C126255220 @default.
- W4377013714 hasConcept C126980161 @default.
- W4377013714 hasConcept C154945302 @default.
- W4377013714 hasConcept C177179195 @default.
- W4377013714 hasConcept C33923547 @default.
- W4377013714 hasConcept C41008148 @default.
- W4377013714 hasConcept C48372109 @default.
- W4377013714 hasConcept C50644808 @default.
- W4377013714 hasConcept C58053490 @default.
- W4377013714 hasConcept C62520636 @default.
- W4377013714 hasConcept C84114770 @default.
- W4377013714 hasConcept C90408235 @default.
- W4377013714 hasConcept C94375191 @default.
- W4377013714 hasConceptScore W4377013714C11413529 @default.
- W4377013714 hasConceptScore W4377013714C121332964 @default.
- W4377013714 hasConceptScore W4377013714C126255220 @default.
- W4377013714 hasConceptScore W4377013714C126980161 @default.
- W4377013714 hasConceptScore W4377013714C154945302 @default.
- W4377013714 hasConceptScore W4377013714C177179195 @default.
- W4377013714 hasConceptScore W4377013714C33923547 @default.
- W4377013714 hasConceptScore W4377013714C41008148 @default.
- W4377013714 hasConceptScore W4377013714C48372109 @default.
- W4377013714 hasConceptScore W4377013714C50644808 @default.
- W4377013714 hasConceptScore W4377013714C58053490 @default.