Matches in SemOpenAlex for { <https://semopenalex.org/work/W4377014021> ?p ?o ?g. }
Showing items 1 to 62 of
62
with 100 items per page.
- W4377014021 abstract "An accurate and efficient forecasting of solar energy is necessary for managing the electricity generation and distribution in today’s electricity supply system. However, due to its random character in its time series, accurate forecasting of solar irradiation is a difficult task; but it is important for grid management, scheduling and its balancing. To fully utilize the solar energy in order to balance the generation and consumption, this paper proposed an ensemble approach using CEEMDAN-BiLSTM combination to forecast short term solar irradiation. In this, Complete Ensemble Empirical Mode Decomposition with adaptive noise (CEEMDAN) extract the inherent characteristics of time series data by decomposing it into low and high frequency Intrinsic Mode Functions (IMF’s) and Bidirectional Long Short Term Memory (BiLSTM) used as a forecasting tool to forecast the solar Global Horizontal Irradiance (GHI). Furthermore, using extensive experimental analysis, the research minimizes the number of IMF’s by integrating the CEEMDAN decomposed component (IMF1–IMF14) in order to increase the prediction accuracy. Then, for each IMF subseries, the trained standalone BiLSTM network are assigned to carry out the forecasting. In last stage, the forecasted results of each BiLSTM network are aggregate to compile final results. Two year data (2012–13) of Delhi, India from National Solar Radiation Database (NSRDB) has been used for training while one year data (2014) used for testing purpose for the same location. The proposed model performance is measured in terms of root mean square error (RMSE), mean absolute percentage error (MAPE), Correlation coefficient (R22) and forecast skill (FS). For the comparative analysis of proposed model, several others models: persistence model, unidirectional deep learning models: long short term memory (LSTM), gated recurrent unit (GRU), BiLSTM and two CEEMDAN based BiLSTM models are developed. The proposed model achieved lowest annual average RMSE (18.86 W/m22, 22.24 W/m22, 26.25 W/m22) and MAPE (2.19%, 4.81%, 6.77%) among the other developed models for 1-hr, 2-hr and 3-hr ahead solar GHI forecasting respectively. The maximum correlation coefficient (R22) obtained by the proposed model is 96.4 for 1-hr ahead respectively; on the other hand, forecast skill (%) of 89% with reference to benchmark model. Various test such as: Diebold Mariano Hypothesis test (DMH) and directional change in forecasting (DC) are used to analyze the sensitivity with reference to the difference in forecasted and observed value." @default.
- W4377014021 created "2023-05-19" @default.
- W4377014021 creator A5001896340 @default.
- W4377014021 creator A5009444439 @default.
- W4377014021 creator A5061922603 @default.
- W4377014021 date "2023-05-18" @default.
- W4377014021 modified "2023-10-15" @default.
- W4377014021 title "A New Hybrid Short Term Solar Irradiation Forecasting Method Based on CEEMDAN Decomposition Approach and BiLSTM Deep Learning Network with Grid Search Algorithm" @default.
- W4377014021 doi "https://doi.org/10.13052/dgaej2156-3306.3842" @default.
- W4377014021 hasPublicationYear "2023" @default.
- W4377014021 type Work @default.
- W4377014021 citedByCount "0" @default.
- W4377014021 crossrefType "journal-article" @default.
- W4377014021 hasAuthorship W4377014021A5001896340 @default.
- W4377014021 hasAuthorship W4377014021A5009444439 @default.
- W4377014021 hasAuthorship W4377014021A5061922603 @default.
- W4377014021 hasConcept C105795698 @default.
- W4377014021 hasConcept C112633086 @default.
- W4377014021 hasConcept C11413529 @default.
- W4377014021 hasConcept C124101348 @default.
- W4377014021 hasConcept C139945424 @default.
- W4377014021 hasConcept C150217764 @default.
- W4377014021 hasConcept C153294291 @default.
- W4377014021 hasConcept C154945302 @default.
- W4377014021 hasConcept C205649164 @default.
- W4377014021 hasConcept C25570617 @default.
- W4377014021 hasConcept C33923547 @default.
- W4377014021 hasConcept C41008148 @default.
- W4377014021 hasConcept C50644808 @default.
- W4377014021 hasConcept C76155785 @default.
- W4377014021 hasConcept C9695528 @default.
- W4377014021 hasConceptScore W4377014021C105795698 @default.
- W4377014021 hasConceptScore W4377014021C112633086 @default.
- W4377014021 hasConceptScore W4377014021C11413529 @default.
- W4377014021 hasConceptScore W4377014021C124101348 @default.
- W4377014021 hasConceptScore W4377014021C139945424 @default.
- W4377014021 hasConceptScore W4377014021C150217764 @default.
- W4377014021 hasConceptScore W4377014021C153294291 @default.
- W4377014021 hasConceptScore W4377014021C154945302 @default.
- W4377014021 hasConceptScore W4377014021C205649164 @default.
- W4377014021 hasConceptScore W4377014021C25570617 @default.
- W4377014021 hasConceptScore W4377014021C33923547 @default.
- W4377014021 hasConceptScore W4377014021C41008148 @default.
- W4377014021 hasConceptScore W4377014021C50644808 @default.
- W4377014021 hasConceptScore W4377014021C76155785 @default.
- W4377014021 hasConceptScore W4377014021C9695528 @default.
- W4377014021 hasLocation W43770140211 @default.
- W4377014021 hasOpenAccess W4377014021 @default.
- W4377014021 hasPrimaryLocation W43770140211 @default.
- W4377014021 hasRelatedWork W2594589062 @default.
- W4377014021 hasRelatedWork W2778123278 @default.
- W4377014021 hasRelatedWork W2807954395 @default.
- W4377014021 hasRelatedWork W2942773263 @default.
- W4377014021 hasRelatedWork W3082873596 @default.
- W4377014021 hasRelatedWork W3216603269 @default.
- W4377014021 hasRelatedWork W4200265123 @default.
- W4377014021 hasRelatedWork W4213016846 @default.
- W4377014021 hasRelatedWork W4281693556 @default.
- W4377014021 hasRelatedWork W4320503251 @default.
- W4377014021 isParatext "false" @default.
- W4377014021 isRetracted "false" @default.
- W4377014021 workType "article" @default.