Matches in SemOpenAlex for { <https://semopenalex.org/work/W4377014596> ?p ?o ?g. }
Showing items 1 to 51 of
51
with 100 items per page.
- W4377014596 endingPage "S618" @default.
- W4377014596 startingPage "S618" @default.
- W4377014596 abstract "Brugada Syndrome (BrS) is a rare inherited arrhythmia syndrome with an estimated prevalence of 2-5 per 10,000. Despite its low prevalence, it is responsible for an estimated 4% to 12% of all sudden deaths and in patients with structurally normal hearts. Because of the resulting limited number of available BrS EKG examples, Convoluted Neural Networks (CNNs), which require a large labeled dataset for training, are limited in their ability to automate the detection of BrS. To develop an Artificial Intelligence (AI) model for classifying BrS in the surface EKG by applying a novel self-supervised pretraining architecture on unrelated, unlabeled EKGs, compensating for the limited number of BrS examples. We pretrained a convolutional neural network on randomly selected 3,500,000 EKGs from adult NYU patients utilizing VICReg (Variance-Invariance-Covariance Regularization), a novel regularization architecture for self-supervised training allowing the model to learn embedding (vectors) for each EKG that are informative and unique (Figure 1). We then fine tuned the original model on a set containing 200 adult NYU patients with a MUSE (GE, USA) diagnosis of BrS not included in the pretraining phase, and evaluated the fine-tuned model for binary classification of Brugada. We used a modification of a multilayered convolutional neural network architecture similar to ConvNext, with a Softmax activation function for classification. Of the 200 EKGs with a MUSE label of BrS, 114 (57%) were confirmed as BrS by an expert Electrophysiologist and blended with a cohort of randomly selected 200 EKGs with non – BrS label. The combined cohort was divided into 80% training (with 20% validation) and 20% test sub-sets. The CNN classified BrS with an AUC of 0.953 (sensitivity 0.87, specificity 0.87), outperforming all previously described supervised learning models trained on larger datasets. We developed a novel deep learning model using VICReg architecture for self-supervised pretraining. We demonstrate the classification of BrS EKGs with high performance achieved with a remarkably small labeled dataset. Supervised pretraining with VICReg may be a useful architecture for improving model classification performance on rare conditions with limited availability of labeled data." @default.
- W4377014596 created "2023-05-19" @default.
- W4377014596 creator A5049595189 @default.
- W4377014596 creator A5057069074 @default.
- W4377014596 creator A5091807315 @default.
- W4377014596 date "2023-05-01" @default.
- W4377014596 modified "2023-10-01" @default.
- W4377014596 title "PO-04-212 BRUGADA EKG CLASSIFICATION WITH SELF-SUPERVISED VICREG PERTAINING: A NOVEL ARTIFICIAL INTELLIGENCE ARCHITECTURE FOR RARE ARRHYTHMIA" @default.
- W4377014596 doi "https://doi.org/10.1016/j.hrthm.2023.03.1302" @default.
- W4377014596 hasPublicationYear "2023" @default.
- W4377014596 type Work @default.
- W4377014596 citedByCount "0" @default.
- W4377014596 crossrefType "journal-article" @default.
- W4377014596 hasAuthorship W4377014596A5049595189 @default.
- W4377014596 hasAuthorship W4377014596A5057069074 @default.
- W4377014596 hasAuthorship W4377014596A5091807315 @default.
- W4377014596 hasBestOaLocation W43770145961 @default.
- W4377014596 hasConcept C153180895 @default.
- W4377014596 hasConcept C154945302 @default.
- W4377014596 hasConcept C164705383 @default.
- W4377014596 hasConcept C2777382798 @default.
- W4377014596 hasConcept C41008148 @default.
- W4377014596 hasConcept C71924100 @default.
- W4377014596 hasConcept C81363708 @default.
- W4377014596 hasConceptScore W4377014596C153180895 @default.
- W4377014596 hasConceptScore W4377014596C154945302 @default.
- W4377014596 hasConceptScore W4377014596C164705383 @default.
- W4377014596 hasConceptScore W4377014596C2777382798 @default.
- W4377014596 hasConceptScore W4377014596C41008148 @default.
- W4377014596 hasConceptScore W4377014596C71924100 @default.
- W4377014596 hasConceptScore W4377014596C81363708 @default.
- W4377014596 hasIssue "5" @default.
- W4377014596 hasLocation W43770145961 @default.
- W4377014596 hasOpenAccess W4377014596 @default.
- W4377014596 hasPrimaryLocation W43770145961 @default.
- W4377014596 hasRelatedWork W2053766426 @default.
- W4377014596 hasRelatedWork W2597940648 @default.
- W4377014596 hasRelatedWork W2600182461 @default.
- W4377014596 hasRelatedWork W2693311789 @default.
- W4377014596 hasRelatedWork W2767651786 @default.
- W4377014596 hasRelatedWork W2791531538 @default.
- W4377014596 hasRelatedWork W2893783387 @default.
- W4377014596 hasRelatedWork W2912288872 @default.
- W4377014596 hasRelatedWork W4250742818 @default.
- W4377014596 hasRelatedWork W564581980 @default.
- W4377014596 hasVolume "20" @default.
- W4377014596 isParatext "false" @default.
- W4377014596 isRetracted "false" @default.
- W4377014596 workType "article" @default.