Matches in SemOpenAlex for { <https://semopenalex.org/work/W4377014732> ?p ?o ?g. }
Showing items 1 to 57 of
57
with 100 items per page.
- W4377014732 endingPage "S444" @default.
- W4377014732 startingPage "S444" @default.
- W4377014732 abstract "State of the art electrophysiology (EP) recording systems allow recording of both the surface electrocardiograms and intracardiac electrograms (EGMs) in an unfiltered fashion with improved quality, lower noise and higher sample rate. Legacy EP recording systems sample and store irreversibly pre-filtered EGMs, often susceptible to noise and interference. This study hypothesized that EGM quality impacts the performance of machine learning algorithms later trained on these data. This study compares the performance of a previously validated machine learning algorithm that classifies pulmonary vein potentials trained on simultaneous recorded legacy and novel EP recording system datasets. Data from pulmonary vein isolation procedures were simultaneously collected using a conventional EP recording system (EP-Tracer, CardioTek and LabSystem Pro, Boston Scientific) and a novel electrophysiology recording system (ECGenius System, CathVision, Denmark) connected in parallel. A machine learning classification algorithm, originally designed for legacy data, was adapted to use data from both the conventional and ECGenius EP recording systems. The performance of the algorithm was evaluated using k-fold validation without overlap in patient data between folds. Classified labels across all folds were summarized and compared to the common ground truth labels of the two datasets. In total, 1536 samples from 521 EGMs were extracted from 89 patients prospectively enrolled in the PVISION study. The trained algorithm using the ECGenius recorded EGMs resulted in a higher predictive value (91% vs 84%), sensitivity (93% vs 90%) and overall accuracy (91% vs 86%) compared to the algorithm trained with EGMs from the conventional dataset, resulting in superiority of the ECGenius System algorithm (p <0.05). Receiver operating characteristic (ROC) curves show superiority of the ECGenius-trained algorithm at all relevant operating points (Fig. 1). Performance of machine learning algorithms using intracardiac EP data are dependent on EGM quality and sample rate. Using high quality, unfiltered unipolar EGMs from a novel EP recording system resulted in superior machine learning algorithm performance compared to the use of EGMs recorded with legacy EP systems." @default.
- W4377014732 created "2023-05-19" @default.
- W4377014732 creator A5048056428 @default.
- W4377014732 creator A5048467349 @default.
- W4377014732 creator A5048760505 @default.
- W4377014732 creator A5085600739 @default.
- W4377014732 date "2023-05-01" @default.
- W4377014732 modified "2023-10-01" @default.
- W4377014732 title "PO-03-007 CROSS VALIDATION OF A MACHINE LEARNING ALGORITHM DESIGNED TO IDENTIFY PULMONARY VEIN SIGNALS USING COMPETING TRAINING DATA" @default.
- W4377014732 doi "https://doi.org/10.1016/j.hrthm.2023.03.977" @default.
- W4377014732 hasPublicationYear "2023" @default.
- W4377014732 type Work @default.
- W4377014732 citedByCount "0" @default.
- W4377014732 crossrefType "journal-article" @default.
- W4377014732 hasAuthorship W4377014732A5048056428 @default.
- W4377014732 hasAuthorship W4377014732A5048467349 @default.
- W4377014732 hasAuthorship W4377014732A5048760505 @default.
- W4377014732 hasAuthorship W4377014732A5085600739 @default.
- W4377014732 hasBestOaLocation W43770147321 @default.
- W4377014732 hasConcept C11413529 @default.
- W4377014732 hasConcept C115961682 @default.
- W4377014732 hasConcept C119857082 @default.
- W4377014732 hasConcept C154945302 @default.
- W4377014732 hasConcept C164705383 @default.
- W4377014732 hasConcept C41008148 @default.
- W4377014732 hasConcept C71924100 @default.
- W4377014732 hasConcept C80093799 @default.
- W4377014732 hasConcept C99498987 @default.
- W4377014732 hasConceptScore W4377014732C11413529 @default.
- W4377014732 hasConceptScore W4377014732C115961682 @default.
- W4377014732 hasConceptScore W4377014732C119857082 @default.
- W4377014732 hasConceptScore W4377014732C154945302 @default.
- W4377014732 hasConceptScore W4377014732C164705383 @default.
- W4377014732 hasConceptScore W4377014732C41008148 @default.
- W4377014732 hasConceptScore W4377014732C71924100 @default.
- W4377014732 hasConceptScore W4377014732C80093799 @default.
- W4377014732 hasConceptScore W4377014732C99498987 @default.
- W4377014732 hasIssue "5" @default.
- W4377014732 hasLocation W43770147321 @default.
- W4377014732 hasOpenAccess W4377014732 @default.
- W4377014732 hasPrimaryLocation W43770147321 @default.
- W4377014732 hasRelatedWork W2001230429 @default.
- W4377014732 hasRelatedWork W2080364706 @default.
- W4377014732 hasRelatedWork W2748952813 @default.
- W4377014732 hasRelatedWork W2899084033 @default.
- W4377014732 hasRelatedWork W2905349323 @default.
- W4377014732 hasRelatedWork W2947428530 @default.
- W4377014732 hasRelatedWork W2961085424 @default.
- W4377014732 hasRelatedWork W4306674287 @default.
- W4377014732 hasRelatedWork W4379966998 @default.
- W4377014732 hasRelatedWork W4224009465 @default.
- W4377014732 hasVolume "20" @default.
- W4377014732 isParatext "false" @default.
- W4377014732 isRetracted "false" @default.
- W4377014732 workType "article" @default.