Matches in SemOpenAlex for { <https://semopenalex.org/work/W4377014978> ?p ?o ?g. }
- W4377014978 endingPage "103418" @default.
- W4377014978 startingPage "103418" @default.
- W4377014978 abstract "This research predicted the meteorological drought of Sakarya province in northwest Türkiye using long short-term memory (LSTM). This deep learning algorithm has gained popularity in prediction studies. The standardized precipitation index (SPI), which can only be derived using precipitation data, was utilized for 1, 3, and 6-month time scales. SPI-1, SPI-3, and SPI-6-month time scales drought data calculated from the monthly precipitation data of the Sakarya Meteorology Station between 1960 and 2020 were taken as input data in the LSTM model. SPI drought data were used between 1960 and 2005 as training data and 2006–2020 as test data. Drought at t+1 output time was predicted using SPI values at t, t-1, t-2, and t-3 lag times as input variables. In addition, the results were compared with the empirical mode decomposition (EMD)-extreme learning machine (ELM) hybrid model to understand the capabilities of the standalone LSTM prediction model. The LSTM model yielded the best results (MAE = 0.11, NSE = 0.97, R2 = 0.97) for the SPI-1-month time scale and the best results (MAE = 0.18, NSE = 0.92, R2 = 0.94) for 3-month time scale. The EMD-ELM hybrid model yielded the best results (MAE = 0.22, NSE = 0.95, R2 = 0.96) for the SPI-6-month time scale. Due to the high performance of this study's proposed standalone LSTM model, it was concluded that drought time series do not need to be subjected to pre-processing techniques." @default.
- W4377014978 created "2023-05-19" @default.
- W4377014978 creator A5023539450 @default.
- W4377014978 creator A5079703477 @default.
- W4377014978 date "2023-10-01" @default.
- W4377014978 modified "2023-10-18" @default.
- W4377014978 title "Prediction of the standardized precipitation index based on the long short-term memory and empirical mode decomposition-extreme learning machine models: The Case of Sakarya, Türkiye" @default.
- W4377014978 cites W1800280049 @default.
- W4377014978 cites W1977660032 @default.
- W4377014978 cites W1996836686 @default.
- W4377014978 cites W2004484179 @default.
- W4377014978 cites W2007221293 @default.
- W4377014978 cites W2023646846 @default.
- W4377014978 cites W2028119131 @default.
- W4377014978 cites W2033904036 @default.
- W4377014978 cites W2042217950 @default.
- W4377014978 cites W2046548554 @default.
- W4377014978 cites W2064675550 @default.
- W4377014978 cites W2077968790 @default.
- W4377014978 cites W2111072639 @default.
- W4377014978 cites W2114721138 @default.
- W4377014978 cites W2305653750 @default.
- W4377014978 cites W2547003853 @default.
- W4377014978 cites W2763641192 @default.
- W4377014978 cites W2768091302 @default.
- W4377014978 cites W2802079274 @default.
- W4377014978 cites W2883615841 @default.
- W4377014978 cites W2886653464 @default.
- W4377014978 cites W2889283791 @default.
- W4377014978 cites W2889717020 @default.
- W4377014978 cites W2893630142 @default.
- W4377014978 cites W2913182941 @default.
- W4377014978 cites W2919115771 @default.
- W4377014978 cites W2938731302 @default.
- W4377014978 cites W2949039742 @default.
- W4377014978 cites W2957309518 @default.
- W4377014978 cites W2976755854 @default.
- W4377014978 cites W2999092792 @default.
- W4377014978 cites W3001768830 @default.
- W4377014978 cites W3005013060 @default.
- W4377014978 cites W3008068304 @default.
- W4377014978 cites W3025282500 @default.
- W4377014978 cites W3097312306 @default.
- W4377014978 cites W3120558919 @default.
- W4377014978 cites W3126940313 @default.
- W4377014978 cites W3156959225 @default.
- W4377014978 cites W3175367858 @default.
- W4377014978 cites W3197884035 @default.
- W4377014978 cites W3202254272 @default.
- W4377014978 cites W3207851336 @default.
- W4377014978 cites W4200006627 @default.
- W4377014978 cites W4200043061 @default.
- W4377014978 cites W4210418416 @default.
- W4377014978 cites W4220835443 @default.
- W4377014978 cites W4224316927 @default.
- W4377014978 cites W4226289783 @default.
- W4377014978 cites W4280643774 @default.
- W4377014978 cites W4281845941 @default.
- W4377014978 cites W4290769093 @default.
- W4377014978 cites W4308075033 @default.
- W4377014978 cites W4308968846 @default.
- W4377014978 cites W4309787652 @default.
- W4377014978 cites W4312163395 @default.
- W4377014978 cites W4313890975 @default.
- W4377014978 cites W4316814925 @default.
- W4377014978 cites W4319020257 @default.
- W4377014978 cites W4360616577 @default.
- W4377014978 cites W4376848575 @default.
- W4377014978 cites W2465874490 @default.
- W4377014978 doi "https://doi.org/10.1016/j.pce.2023.103418" @default.
- W4377014978 hasPublicationYear "2023" @default.
- W4377014978 type Work @default.
- W4377014978 citedByCount "2" @default.
- W4377014978 countsByYear W43770149782023 @default.
- W4377014978 crossrefType "journal-article" @default.
- W4377014978 hasAuthorship W4377014978A5023539450 @default.
- W4377014978 hasAuthorship W4377014978A5079703477 @default.
- W4377014978 hasConcept C105795698 @default.
- W4377014978 hasConcept C107054158 @default.
- W4377014978 hasConcept C111919701 @default.
- W4377014978 hasConcept C112633086 @default.
- W4377014978 hasConcept C11413529 @default.
- W4377014978 hasConcept C119857082 @default.
- W4377014978 hasConcept C153294291 @default.
- W4377014978 hasConcept C154945302 @default.
- W4377014978 hasConcept C205649164 @default.
- W4377014978 hasConcept C25570617 @default.
- W4377014978 hasConcept C2778755073 @default.
- W4377014978 hasConcept C2780150128 @default.
- W4377014978 hasConcept C31258907 @default.
- W4377014978 hasConcept C33923547 @default.
- W4377014978 hasConcept C41008148 @default.
- W4377014978 hasConcept C48677424 @default.
- W4377014978 hasConcept C50644808 @default.
- W4377014978 hasConcept C58640448 @default.
- W4377014978 hasConcept C75778745 @default.
- W4377014978 hasConceptScore W4377014978C105795698 @default.
- W4377014978 hasConceptScore W4377014978C107054158 @default.