Matches in SemOpenAlex for { <https://semopenalex.org/work/W4377015425> ?p ?o ?g. }
Showing items 1 to 69 of
69
with 100 items per page.
- W4377015425 endingPage "S619" @default.
- W4377015425 startingPage "S619" @default.
- W4377015425 abstract "Deep learning (DL) methods substantially improve the accuracy of automated ECG algorithms. Long-term ECG data (up to 30 days) collected in ambulatory environments significantly reduce performance rates, lead to many diagnostic errors and therefore increase the time to adjudication by qualified physicians. Overcome the diagnostic accuracy limitations of computerized ECG analysis with a modular lead-dependent DL software and a user interface to enable or disable DL module. Errors in computerized ECG analysis happens for different reasons. The most frequent errors are related to poor quality segments during daily activities and to low-amplitude electrical activity in atrial arrhythmias. We have developed for each Holter lead a three-part modular deep neural network (DL modules) based on three ECG features of atrial fibrillation (Afib) and atrial flutter AFL : regular or irregular heart rate, presence of absence of P, fibrillatory or flutter waves, and general appearance of arrhythmia. The validation database consisted of annotated two-leads 24-hour recordings collected from 187 patients with both paroxysmal and permanent Afib and AFL episodes divided into 60-second non-overlapping windows (i.e. 249,419 one-minute sample database). F1 scores for the fully automated analysis were 0.99 for normal sinus rhythm (NSR), 0.95 for Afib and 0.89 for AFL. The system includes a dedicated user interface, each DL module in a given Holter ECG lead can be transiently or permanently disabled by a trained cardiologist, depending on ECG quality and amplitude of the atrial electrical activity. Only 8 patients required manual deactivation of at least one DL module, which required a negligible editing time per recording. The main manual decisions were to remove a poor-quality lead and/or to disable the P-wave DL module. The second-pass F1 score were 0.99 for NSR, 0.98 for Afib and 0.96 for AFL. A modular deep learning architecture with user interface to disable ECG features significantly improves the performance rates of computerized Holter ECG analysis and decrease editing time. Further developments will include automated activation and deactivation to avoid any manual re- reading" @default.
- W4377015425 created "2023-05-19" @default.
- W4377015425 creator A5019352964 @default.
- W4377015425 creator A5019450757 @default.
- W4377015425 creator A5031810965 @default.
- W4377015425 creator A5033069714 @default.
- W4377015425 date "2023-05-01" @default.
- W4377015425 modified "2023-09-23" @default.
- W4377015425 title "PO-04-213 OVERCOMING ERRORS OF MACHINE LEARNING ALGORITHMS: A DEEP LEARNING MODULAR ECG APPROACH FOR CARDIOLOGIST ASSISTED ADJUDICATION OF ATRIAL FIBRILLATION AND ATRIAL FLUTTER EPISODES" @default.
- W4377015425 doi "https://doi.org/10.1016/j.hrthm.2023.03.1303" @default.
- W4377015425 hasPublicationYear "2023" @default.
- W4377015425 type Work @default.
- W4377015425 citedByCount "0" @default.
- W4377015425 crossrefType "journal-article" @default.
- W4377015425 hasAuthorship W4377015425A5019352964 @default.
- W4377015425 hasAuthorship W4377015425A5019450757 @default.
- W4377015425 hasAuthorship W4377015425A5031810965 @default.
- W4377015425 hasAuthorship W4377015425A5033069714 @default.
- W4377015425 hasBestOaLocation W43770154251 @default.
- W4377015425 hasConcept C101468663 @default.
- W4377015425 hasConcept C111919701 @default.
- W4377015425 hasConcept C11413529 @default.
- W4377015425 hasConcept C126322002 @default.
- W4377015425 hasConcept C154945302 @default.
- W4377015425 hasConcept C164705383 @default.
- W4377015425 hasConcept C175202392 @default.
- W4377015425 hasConcept C2778292772 @default.
- W4377015425 hasConcept C2779161974 @default.
- W4377015425 hasConcept C2780040984 @default.
- W4377015425 hasConcept C2781121602 @default.
- W4377015425 hasConcept C2909021529 @default.
- W4377015425 hasConcept C41008148 @default.
- W4377015425 hasConcept C50644808 @default.
- W4377015425 hasConcept C71924100 @default.
- W4377015425 hasConceptScore W4377015425C101468663 @default.
- W4377015425 hasConceptScore W4377015425C111919701 @default.
- W4377015425 hasConceptScore W4377015425C11413529 @default.
- W4377015425 hasConceptScore W4377015425C126322002 @default.
- W4377015425 hasConceptScore W4377015425C154945302 @default.
- W4377015425 hasConceptScore W4377015425C164705383 @default.
- W4377015425 hasConceptScore W4377015425C175202392 @default.
- W4377015425 hasConceptScore W4377015425C2778292772 @default.
- W4377015425 hasConceptScore W4377015425C2779161974 @default.
- W4377015425 hasConceptScore W4377015425C2780040984 @default.
- W4377015425 hasConceptScore W4377015425C2781121602 @default.
- W4377015425 hasConceptScore W4377015425C2909021529 @default.
- W4377015425 hasConceptScore W4377015425C41008148 @default.
- W4377015425 hasConceptScore W4377015425C50644808 @default.
- W4377015425 hasConceptScore W4377015425C71924100 @default.
- W4377015425 hasIssue "5" @default.
- W4377015425 hasLocation W43770154251 @default.
- W4377015425 hasOpenAccess W4377015425 @default.
- W4377015425 hasPrimaryLocation W43770154251 @default.
- W4377015425 hasRelatedWork W2003799049 @default.
- W4377015425 hasRelatedWork W2047344647 @default.
- W4377015425 hasRelatedWork W2078105309 @default.
- W4377015425 hasRelatedWork W2085641168 @default.
- W4377015425 hasRelatedWork W2171477698 @default.
- W4377015425 hasRelatedWork W2266993741 @default.
- W4377015425 hasRelatedWork W2376718832 @default.
- W4377015425 hasRelatedWork W2409916269 @default.
- W4377015425 hasRelatedWork W2532049082 @default.
- W4377015425 hasRelatedWork W3041008096 @default.
- W4377015425 hasVolume "20" @default.
- W4377015425 isParatext "false" @default.
- W4377015425 isRetracted "false" @default.
- W4377015425 workType "article" @default.