Matches in SemOpenAlex for { <https://semopenalex.org/work/W4377015836> ?p ?o ?g. }
Showing items 1 to 83 of
83
with 100 items per page.
- W4377015836 endingPage "S30" @default.
- W4377015836 startingPage "S30" @default.
- W4377015836 abstract "Classifying missense variants is often challenging due to limited pathogenicity evidence. Consequently, many remain categorized as variants of uncertain significance (VUS). VUS are at the core of healthcare disparities, as individuals from underrepresented race, ethnicity and ancestry (REA) populations are more likely to receive a VUS result. To improve VUS interpretation, we designed machine learning (ML), gene-specific algorithms utilizing public genomic, protein, and population data. To evaluate ML utility in arrhythmia genetic testing across REA groups. From 1/1-11/15/22, various ML algorithms were validated at Invitae, using existing models such as SpliceAI and developing our own by leveraging gnomAD, AlphaFold, and others. ML evidence was incorporated into Sherloc, a semi-quantitative ACMG/AMP-based variant interpretation framework. Only evidence that met a negative or positive predictive value >80% was incorporated. At least one evidence model was available for 42 arrhythmia genes. Variant classifications impacted by ML were evaluated, stratified by REA groups. Out of 2,715 US-based individuals that underwent arrhythmia panel testing, 1,303 (48%) had ML evidence applied to at least one variant and 796 (29%) were from an underrepresented group. Models contributed to classifying at least one benign/likely benign (B/LB) variant in 840 (31%) and at least one pathogenic/likely pathogenic (P/LP) variant in 43 (1.6%) individuals. A higher percentage of Asian (42%), Black (38%), and Hispanic (35%) individuals had an ML-dependent definitive classification (P/LP or B/LB) relative to White (30%) individuals (p <0.03). The average amount of benign or pathogenic ML evidence applied per reclassified variant was similar across populations, showing that the models contributed comparably across REA groups. By leveraging publicly available datasets to create gene-specific ML algorithms for variant interpretation, the resultant evidence impacted a significant number of individuals who had arrhythmia genetic testing. For those with at least one variant with ML evidence applied, 67% would have otherwise received a VUS result. Additionally, ML appears to provide more definitive variant classifications for underrepresented individuals. ML can assess factors in ways that are agnostic to population ancestry and, when appropriately implemented, can narrow the VUS gap rates across REA groups." @default.
- W4377015836 created "2023-05-19" @default.
- W4377015836 creator A5004240247 @default.
- W4377015836 creator A5008875424 @default.
- W4377015836 creator A5010880834 @default.
- W4377015836 creator A5011272336 @default.
- W4377015836 creator A5013860280 @default.
- W4377015836 creator A5020536779 @default.
- W4377015836 creator A5029663768 @default.
- W4377015836 creator A5035186460 @default.
- W4377015836 creator A5044285543 @default.
- W4377015836 creator A5064218126 @default.
- W4377015836 creator A5078066093 @default.
- W4377015836 date "2023-05-01" @default.
- W4377015836 modified "2023-09-26" @default.
- W4377015836 title "CE-454029-2 THE UTILITY OF MACHINE LEARNING TOOLS IN REDUCING VUS IN ARRHYTHMIA GENES FOR INDIVIDUALS FROM UNDERREPRESENTED POPULATIONS COMPARED TO WELL STUDIED POPULATIONS" @default.
- W4377015836 doi "https://doi.org/10.1016/j.hrthm.2023.03.260" @default.
- W4377015836 hasPublicationYear "2023" @default.
- W4377015836 type Work @default.
- W4377015836 citedByCount "0" @default.
- W4377015836 crossrefType "journal-article" @default.
- W4377015836 hasAuthorship W4377015836A5004240247 @default.
- W4377015836 hasAuthorship W4377015836A5008875424 @default.
- W4377015836 hasAuthorship W4377015836A5010880834 @default.
- W4377015836 hasAuthorship W4377015836A5011272336 @default.
- W4377015836 hasAuthorship W4377015836A5013860280 @default.
- W4377015836 hasAuthorship W4377015836A5020536779 @default.
- W4377015836 hasAuthorship W4377015836A5029663768 @default.
- W4377015836 hasAuthorship W4377015836A5035186460 @default.
- W4377015836 hasAuthorship W4377015836A5044285543 @default.
- W4377015836 hasAuthorship W4377015836A5064218126 @default.
- W4377015836 hasAuthorship W4377015836A5078066093 @default.
- W4377015836 hasBestOaLocation W43770158361 @default.
- W4377015836 hasConcept C104317684 @default.
- W4377015836 hasConcept C126322002 @default.
- W4377015836 hasConcept C137403100 @default.
- W4377015836 hasConcept C144024400 @default.
- W4377015836 hasConcept C19165224 @default.
- W4377015836 hasConcept C2780673598 @default.
- W4377015836 hasConcept C2908647359 @default.
- W4377015836 hasConcept C501734568 @default.
- W4377015836 hasConcept C54355233 @default.
- W4377015836 hasConcept C64502627 @default.
- W4377015836 hasConcept C71924100 @default.
- W4377015836 hasConcept C75563809 @default.
- W4377015836 hasConcept C86803240 @default.
- W4377015836 hasConcept C89423630 @default.
- W4377015836 hasConcept C99454951 @default.
- W4377015836 hasConceptScore W4377015836C104317684 @default.
- W4377015836 hasConceptScore W4377015836C126322002 @default.
- W4377015836 hasConceptScore W4377015836C137403100 @default.
- W4377015836 hasConceptScore W4377015836C144024400 @default.
- W4377015836 hasConceptScore W4377015836C19165224 @default.
- W4377015836 hasConceptScore W4377015836C2780673598 @default.
- W4377015836 hasConceptScore W4377015836C2908647359 @default.
- W4377015836 hasConceptScore W4377015836C501734568 @default.
- W4377015836 hasConceptScore W4377015836C54355233 @default.
- W4377015836 hasConceptScore W4377015836C64502627 @default.
- W4377015836 hasConceptScore W4377015836C71924100 @default.
- W4377015836 hasConceptScore W4377015836C75563809 @default.
- W4377015836 hasConceptScore W4377015836C86803240 @default.
- W4377015836 hasConceptScore W4377015836C89423630 @default.
- W4377015836 hasConceptScore W4377015836C99454951 @default.
- W4377015836 hasIssue "5" @default.
- W4377015836 hasLocation W43770158361 @default.
- W4377015836 hasOpenAccess W4377015836 @default.
- W4377015836 hasPrimaryLocation W43770158361 @default.
- W4377015836 hasRelatedWork W2041353925 @default.
- W4377015836 hasRelatedWork W2187397206 @default.
- W4377015836 hasRelatedWork W2626457953 @default.
- W4377015836 hasRelatedWork W2891772936 @default.
- W4377015836 hasRelatedWork W2940140228 @default.
- W4377015836 hasRelatedWork W3123287010 @default.
- W4377015836 hasRelatedWork W3158972030 @default.
- W4377015836 hasRelatedWork W4362697554 @default.
- W4377015836 hasRelatedWork W4362697827 @default.
- W4377015836 hasRelatedWork W4379654784 @default.
- W4377015836 hasVolume "20" @default.
- W4377015836 isParatext "false" @default.
- W4377015836 isRetracted "false" @default.
- W4377015836 workType "article" @default.