Matches in SemOpenAlex for { <https://semopenalex.org/work/W4377015962> ?p ?o ?g. }
Showing items 1 to 61 of
61
with 100 items per page.
- W4377015962 endingPage "S493" @default.
- W4377015962 startingPage "S493" @default.
- W4377015962 abstract "Heart failure (HF) related diagnostics parameters measured daily from implantable cardioverter defibrillators (ICD) and cardiac resynchronization therapy defibrillators (CRTD) have shown to change before, during and after HF hospitalization events. We assessed the ability to identify patients at risk of a recurrent HF admission with different machine learning techniques leveraging statistical and temporal behavior of the cardiac compass parameters prior and during HF hospitalization events. We linked Optum® deidentified Electronic Health Record dataset during the period from 2007-2021 to the Medtronic CareLinkTM data warehouse with device based continuous diagnostic monitoring data. Patients with ICD/CRTD implants with intra-thoracic impedance diagnostic feature were included for this study. Retrospective analysis was completed identifying HF admissions with diagnostic parameters from 30-days prior admission day ending on discharge day. Analyzed events included such HF admissions within the 2 to 30 days for length of stay. Admission day parameters were evaluated with the following criteria: 7-days to 30-days activity, night heart rate and day heart rate ratios, plus 3-day impedance change. In addition, diagnostic data during hospitalization was summarized into range, median, mean, and standard deviation. Length of stay was also used as an input for the models. Two groups were created based on hospitalization events with or without 30-day readmission. Dataset was split into training and validation subsets. Multiple machine learning models were trained to classify events indicating those followed by a close HF readmission. Models’ results were compared in terms of sensitivity, specificity, and false positive rates on validation set. 1745 HF hospitalization events were assessed in this study, including 486 preceding a re-admission event within 30-days post discharge. The average length of stay on this cohort was 6.2 days. Seven machine learning models were trained using 28 features derived from diagnostic data and length of stay as input. Models’ sensitivity and specificity ranged from 0.11 to 0.84 and 0.89 to 0.93 respectively. Table 1 depicts area under the curve (AUC) for each trained model. Mean model accuracy on validation data was 0.84. A machine learning derived HF diagnostic criteria evaluating diagnostic parameters on HF admission day plus while in hospital may be useful to identify patients at higher risk of 30-days HF readmission at time of discharge.Tabled 1Table 1. AUC for each Classification ModelMODEL NAMEAUCLogistic Regression0.92Decision Tree0.82RUSBoosted Trees0.94Support Vector Machine0.83Bi-layered Neural Network0.86Three-layered Neural Network0.86Optimizable Neural Network0.94 Open table in a new tab" @default.
- W4377015962 created "2023-05-19" @default.
- W4377015962 creator A5021051759 @default.
- W4377015962 creator A5021748437 @default.
- W4377015962 creator A5047969297 @default.
- W4377015962 date "2023-05-01" @default.
- W4377015962 modified "2023-10-01" @default.
- W4377015962 title "PO-03-076 MACHINE LEARNING METHODS IDENTIFYING RISK FOR 30-DAY HEART FAILURE READMISSION USING DIAGNOSTICS PARAMETERS FROM IMPLANTED CARDIOVASCULAR DEVICES" @default.
- W4377015962 doi "https://doi.org/10.1016/j.hrthm.2023.03.1068" @default.
- W4377015962 hasPublicationYear "2023" @default.
- W4377015962 type Work @default.
- W4377015962 citedByCount "0" @default.
- W4377015962 crossrefType "journal-article" @default.
- W4377015962 hasAuthorship W4377015962A5021051759 @default.
- W4377015962 hasAuthorship W4377015962A5021748437 @default.
- W4377015962 hasAuthorship W4377015962A5047969297 @default.
- W4377015962 hasBestOaLocation W43770159621 @default.
- W4377015962 hasConcept C126322002 @default.
- W4377015962 hasConcept C164705383 @default.
- W4377015962 hasConcept C167135981 @default.
- W4377015962 hasConcept C194828623 @default.
- W4377015962 hasConcept C2776034619 @default.
- W4377015962 hasConcept C2777093960 @default.
- W4377015962 hasConcept C2778198053 @default.
- W4377015962 hasConcept C2908647359 @default.
- W4377015962 hasConcept C45827449 @default.
- W4377015962 hasConcept C71924100 @default.
- W4377015962 hasConcept C78085059 @default.
- W4377015962 hasConcept C99454951 @default.
- W4377015962 hasConceptScore W4377015962C126322002 @default.
- W4377015962 hasConceptScore W4377015962C164705383 @default.
- W4377015962 hasConceptScore W4377015962C167135981 @default.
- W4377015962 hasConceptScore W4377015962C194828623 @default.
- W4377015962 hasConceptScore W4377015962C2776034619 @default.
- W4377015962 hasConceptScore W4377015962C2777093960 @default.
- W4377015962 hasConceptScore W4377015962C2778198053 @default.
- W4377015962 hasConceptScore W4377015962C2908647359 @default.
- W4377015962 hasConceptScore W4377015962C45827449 @default.
- W4377015962 hasConceptScore W4377015962C71924100 @default.
- W4377015962 hasConceptScore W4377015962C78085059 @default.
- W4377015962 hasConceptScore W4377015962C99454951 @default.
- W4377015962 hasIssue "5" @default.
- W4377015962 hasLocation W43770159621 @default.
- W4377015962 hasOpenAccess W4377015962 @default.
- W4377015962 hasPrimaryLocation W43770159621 @default.
- W4377015962 hasRelatedWork W2067788052 @default.
- W4377015962 hasRelatedWork W2099569639 @default.
- W4377015962 hasRelatedWork W2107400784 @default.
- W4377015962 hasRelatedWork W2369801253 @default.
- W4377015962 hasRelatedWork W2587855402 @default.
- W4377015962 hasRelatedWork W2915561147 @default.
- W4377015962 hasRelatedWork W2999204693 @default.
- W4377015962 hasRelatedWork W3031164927 @default.
- W4377015962 hasRelatedWork W4293037456 @default.
- W4377015962 hasRelatedWork W4315784592 @default.
- W4377015962 hasVolume "20" @default.
- W4377015962 isParatext "false" @default.
- W4377015962 isRetracted "false" @default.
- W4377015962 workType "article" @default.