Matches in SemOpenAlex for { <https://semopenalex.org/work/W4377018026> ?p ?o ?g. }
Showing items 1 to 97 of
97
with 100 items per page.
- W4377018026 endingPage "121228" @default.
- W4377018026 startingPage "121228" @default.
- W4377018026 abstract "Buildings account for 40% of the energy consumption and 13% of the greenhouse gas (GHG) emissions in the U.S. To improve building energy efficiency, cities around the U.S. issued energy policies, such as the energy performance disclosure requirement in New York City, to encourage building owners to make informed retrofitting decisions. However, complying with these policies is expensive and time-consuming for government agencies and building owners, especially for old buildings where detailed building information is not readily available. In this work, we propose an automatic, non-intrusive, and scalable framework to capture energy-essential building variables through reasoning building façade images - FaçadeReasoner. Specifically, we first build a comprehensive building information dataset and identify the most impactful (i.e., principal) variables in relation to building energy performance and GHG emissions using the state-of-the-art feature attribution model. Next, we propose a method to automatically collect an urban scale building image dataset with more than 10,000 façade images and extract principal-building-variables from these images using deep transfer learning. Results show that FacadeReasoner has the capability to predict principal building variables, namely “building type” (accuracy 0.77), “year built” (accuracy 0.62), “building height” (R2 0.80), and rough estimates of “building area” (R2 0.46) from façade images. This study is unique as it marks the first attempt to enable an automated end-to-end framework for urban scale principal-building-variables extraction, providing an efficient and economical alternative for large building portfolio owners and managers (e.g., municipalities) to comprehend urban scale energy-related building information for informed decision-making, directly contributing to Net-Zero 2050." @default.
- W4377018026 created "2023-05-19" @default.
- W4377018026 creator A5001924431 @default.
- W4377018026 creator A5032504295 @default.
- W4377018026 creator A5065463464 @default.
- W4377018026 date "2023-08-01" @default.
- W4377018026 modified "2023-09-29" @default.
- W4377018026 title "Extracting principal building variables from automatically collected urban scale façade images for energy conservation through deep transfer learning" @default.
- W4377018026 cites W1978338723 @default.
- W4377018026 cites W2047961872 @default.
- W4377018026 cites W2055132753 @default.
- W4377018026 cites W2069912221 @default.
- W4377018026 cites W2088886701 @default.
- W4377018026 cites W2108598243 @default.
- W4377018026 cites W2163121678 @default.
- W4377018026 cites W2296719434 @default.
- W4377018026 cites W2297575004 @default.
- W4377018026 cites W2308318555 @default.
- W4377018026 cites W2460762253 @default.
- W4377018026 cites W2519343616 @default.
- W4377018026 cites W2522940576 @default.
- W4377018026 cites W2605391457 @default.
- W4377018026 cites W2618231259 @default.
- W4377018026 cites W2621121878 @default.
- W4377018026 cites W2770820547 @default.
- W4377018026 cites W2795857608 @default.
- W4377018026 cites W2801492038 @default.
- W4377018026 cites W2884390563 @default.
- W4377018026 cites W2893280452 @default.
- W4377018026 cites W2903497040 @default.
- W4377018026 cites W2924793959 @default.
- W4377018026 cites W2963163009 @default.
- W4377018026 cites W2963918968 @default.
- W4377018026 cites W2970808532 @default.
- W4377018026 cites W3012316216 @default.
- W4377018026 cites W3037934875 @default.
- W4377018026 cites W3047067821 @default.
- W4377018026 cites W3104920669 @default.
- W4377018026 cites W3108148981 @default.
- W4377018026 cites W3123103453 @default.
- W4377018026 doi "https://doi.org/10.1016/j.apenergy.2023.121228" @default.
- W4377018026 hasPublicationYear "2023" @default.
- W4377018026 type Work @default.
- W4377018026 citedByCount "0" @default.
- W4377018026 crossrefType "journal-article" @default.
- W4377018026 hasAuthorship W4377018026A5001924431 @default.
- W4377018026 hasAuthorship W4377018026A5032504295 @default.
- W4377018026 hasAuthorship W4377018026A5065463464 @default.
- W4377018026 hasConcept C111919701 @default.
- W4377018026 hasConcept C119599485 @default.
- W4377018026 hasConcept C127413603 @default.
- W4377018026 hasConcept C144559511 @default.
- W4377018026 hasConcept C147176958 @default.
- W4377018026 hasConcept C170154142 @default.
- W4377018026 hasConcept C205649164 @default.
- W4377018026 hasConcept C2742236 @default.
- W4377018026 hasConcept C2778530916 @default.
- W4377018026 hasConcept C2778755073 @default.
- W4377018026 hasConcept C2780165032 @default.
- W4377018026 hasConcept C41008148 @default.
- W4377018026 hasConcept C44154836 @default.
- W4377018026 hasConcept C520301825 @default.
- W4377018026 hasConcept C58640448 @default.
- W4377018026 hasConceptScore W4377018026C111919701 @default.
- W4377018026 hasConceptScore W4377018026C119599485 @default.
- W4377018026 hasConceptScore W4377018026C127413603 @default.
- W4377018026 hasConceptScore W4377018026C144559511 @default.
- W4377018026 hasConceptScore W4377018026C147176958 @default.
- W4377018026 hasConceptScore W4377018026C170154142 @default.
- W4377018026 hasConceptScore W4377018026C205649164 @default.
- W4377018026 hasConceptScore W4377018026C2742236 @default.
- W4377018026 hasConceptScore W4377018026C2778530916 @default.
- W4377018026 hasConceptScore W4377018026C2778755073 @default.
- W4377018026 hasConceptScore W4377018026C2780165032 @default.
- W4377018026 hasConceptScore W4377018026C41008148 @default.
- W4377018026 hasConceptScore W4377018026C44154836 @default.
- W4377018026 hasConceptScore W4377018026C520301825 @default.
- W4377018026 hasConceptScore W4377018026C58640448 @default.
- W4377018026 hasLocation W43770180261 @default.
- W4377018026 hasOpenAccess W4377018026 @default.
- W4377018026 hasPrimaryLocation W43770180261 @default.
- W4377018026 hasRelatedWork W1976393659 @default.
- W4377018026 hasRelatedWork W2036227091 @default.
- W4377018026 hasRelatedWork W2088350269 @default.
- W4377018026 hasRelatedWork W2094940423 @default.
- W4377018026 hasRelatedWork W2352418162 @default.
- W4377018026 hasRelatedWork W2353644008 @default.
- W4377018026 hasRelatedWork W2947479811 @default.
- W4377018026 hasRelatedWork W3037446181 @default.
- W4377018026 hasRelatedWork W4296449869 @default.
- W4377018026 hasRelatedWork W4297908919 @default.
- W4377018026 hasVolume "344" @default.
- W4377018026 isParatext "false" @default.
- W4377018026 isRetracted "false" @default.
- W4377018026 workType "article" @default.