Matches in SemOpenAlex for { <https://semopenalex.org/work/W4377018082> ?p ?o ?g. }
- W4377018082 endingPage "106817" @default.
- W4377018082 startingPage "106817" @default.
- W4377018082 abstract "When planning the development of the energy sector, significant attention is given to the energy from the renewable sources, amongst which the biomass has an important role. Computational fluid mechanics and machine learning models are the powerful and efficient tools which allow the analysis of various heat and mass transfer phenomena in energy facilities. In this study, the in-house developed CFD code and machine learning models (Random Forest, Gradient Boosting and Artificial Neural Network) for predicting the biomass trajectories, particle mass burnout and residence time in a swirl burner reactor are presented. Pulverized biomass combustion cases (fine straw, pinewood and switch grass) with various mean diameters (ranging between 60 and 650 μm) and different shape factors (within the range 0–1) are considered. The results of numerical simulations revealed a noticeably nonlinear dependence between the input values (particle types, sizes and shapes) and the output values (particle trajectories, mass burnout and residence time), mostly due to the complex swirling flow in the reactor. For particles with the mean diameters within the ranges considered, the mass burnout of particles generally decreases as the biomass particle shape factor increases. The residence time of pulverized biomass in the reactor shows in most cases a decreasing trend as the particle shape factor increases. Artificial Neural Network showed the best predictions for both particle mass burnout (RMSE = 0.083 and R2 = 0.937) and particle residence time (RMSE = 1.145 s and R2 = 0.900), providing the reliable assessment of these important indicators in the combustion process." @default.
- W4377018082 created "2023-05-19" @default.
- W4377018082 creator A5011916871 @default.
- W4377018082 creator A5013832911 @default.
- W4377018082 creator A5013946855 @default.
- W4377018082 creator A5026723156 @default.
- W4377018082 creator A5049496906 @default.
- W4377018082 creator A5053440567 @default.
- W4377018082 creator A5059984102 @default.
- W4377018082 creator A5072901963 @default.
- W4377018082 creator A5076582569 @default.
- W4377018082 date "2023-07-01" @default.
- W4377018082 modified "2023-09-26" @default.
- W4377018082 title "Effects of biomass particles size and shape on combustion process in the swirl-stabilized burner reactor: CFD and machine learning approach" @default.
- W4377018082 cites W1678356000 @default.
- W4377018082 cites W1819856745 @default.
- W4377018082 cites W1966299039 @default.
- W4377018082 cites W1974959902 @default.
- W4377018082 cites W1986387276 @default.
- W4377018082 cites W2000259272 @default.
- W4377018082 cites W2003446883 @default.
- W4377018082 cites W2010606312 @default.
- W4377018082 cites W2020169461 @default.
- W4377018082 cites W2045244586 @default.
- W4377018082 cites W2056196264 @default.
- W4377018082 cites W2061642920 @default.
- W4377018082 cites W2078287907 @default.
- W4377018082 cites W2087771825 @default.
- W4377018082 cites W2091248159 @default.
- W4377018082 cites W2302955891 @default.
- W4377018082 cites W2762537349 @default.
- W4377018082 cites W2891476632 @default.
- W4377018082 cites W2908295285 @default.
- W4377018082 cites W2911964244 @default.
- W4377018082 cites W2939208857 @default.
- W4377018082 cites W2944202235 @default.
- W4377018082 cites W2960079456 @default.
- W4377018082 cites W2972443703 @default.
- W4377018082 cites W2982184011 @default.
- W4377018082 cites W2998209612 @default.
- W4377018082 cites W3010621045 @default.
- W4377018082 cites W3019844440 @default.
- W4377018082 cites W3102140816 @default.
- W4377018082 cites W3178438302 @default.
- W4377018082 cites W3197453482 @default.
- W4377018082 cites W3208690424 @default.
- W4377018082 cites W4220846212 @default.
- W4377018082 cites W803459652 @default.
- W4377018082 doi "https://doi.org/10.1016/j.biombioe.2023.106817" @default.
- W4377018082 hasPublicationYear "2023" @default.
- W4377018082 type Work @default.
- W4377018082 citedByCount "0" @default.
- W4377018082 crossrefType "journal-article" @default.
- W4377018082 hasAuthorship W4377018082A5011916871 @default.
- W4377018082 hasAuthorship W4377018082A5013832911 @default.
- W4377018082 hasAuthorship W4377018082A5013946855 @default.
- W4377018082 hasAuthorship W4377018082A5026723156 @default.
- W4377018082 hasAuthorship W4377018082A5049496906 @default.
- W4377018082 hasAuthorship W4377018082A5053440567 @default.
- W4377018082 hasAuthorship W4377018082A5059984102 @default.
- W4377018082 hasAuthorship W4377018082A5072901963 @default.
- W4377018082 hasAuthorship W4377018082A5076582569 @default.
- W4377018082 hasConcept C105923489 @default.
- W4377018082 hasConcept C111368507 @default.
- W4377018082 hasConcept C115540264 @default.
- W4377018082 hasConcept C121332964 @default.
- W4377018082 hasConcept C127313418 @default.
- W4377018082 hasConcept C127413603 @default.
- W4377018082 hasConcept C159985019 @default.
- W4377018082 hasConcept C178790620 @default.
- W4377018082 hasConcept C185592680 @default.
- W4377018082 hasConcept C187320778 @default.
- W4377018082 hasConcept C187530423 @default.
- W4377018082 hasConcept C192562407 @default.
- W4377018082 hasConcept C204323151 @default.
- W4377018082 hasConcept C21880701 @default.
- W4377018082 hasConcept C2775913793 @default.
- W4377018082 hasConcept C2778517922 @default.
- W4377018082 hasConcept C39432304 @default.
- W4377018082 hasConcept C42360764 @default.
- W4377018082 hasConcept C57879066 @default.
- W4377018082 hasConcept C83104080 @default.
- W4377018082 hasConceptScore W4377018082C105923489 @default.
- W4377018082 hasConceptScore W4377018082C111368507 @default.
- W4377018082 hasConceptScore W4377018082C115540264 @default.
- W4377018082 hasConceptScore W4377018082C121332964 @default.
- W4377018082 hasConceptScore W4377018082C127313418 @default.
- W4377018082 hasConceptScore W4377018082C127413603 @default.
- W4377018082 hasConceptScore W4377018082C159985019 @default.
- W4377018082 hasConceptScore W4377018082C178790620 @default.
- W4377018082 hasConceptScore W4377018082C185592680 @default.
- W4377018082 hasConceptScore W4377018082C187320778 @default.
- W4377018082 hasConceptScore W4377018082C187530423 @default.
- W4377018082 hasConceptScore W4377018082C192562407 @default.
- W4377018082 hasConceptScore W4377018082C204323151 @default.
- W4377018082 hasConceptScore W4377018082C21880701 @default.
- W4377018082 hasConceptScore W4377018082C2775913793 @default.
- W4377018082 hasConceptScore W4377018082C2778517922 @default.