Matches in SemOpenAlex for { <https://semopenalex.org/work/W4377019217> ?p ?o ?g. }
Showing items 1 to 82 of
82
with 100 items per page.
- W4377019217 endingPage "012078" @default.
- W4377019217 startingPage "012078" @default.
- W4377019217 abstract "Abstract High-voltage transmission lines’ audible noise parameters are impacted by a variety of multidimensional elements. in order to better the accuracy of audible noise prediction and effectively utilize the time-series properties in the observed audible noise data. In this paper, we propose a combined model of a convolutional neural network (CNN) and a bidirectional long and short-term memory network (BiLSTM)-based attention mechanism based on feature filtering for transmission line audible noise prediction. Firstly, using the transmission line real-world audible noise data as the dataset, the multidimensional factor time series parameters are optimally filtered, and high correlation feature vectors are extracted by using CNN. Secondly, the extracted feature vectors are fed into the BiLSTM for training and prediction, and the prediction performance is further improved by introducing an attention mechanism at the BiLSTM end so that the model focuses on learning more important data features. Finally, the prediction analysis using actual recorded audible noise data from a 500 kV AC transmission line in Sichuan Province demonstrates that the combined CNN-BiLSTM-Attention model suggested in this paper has a higher prediction accuracy than the BiLSTM, CNN-BiLSTM, and BiLSTM-Attention models." @default.
- W4377019217 created "2023-05-19" @default.
- W4377019217 creator A5005179020 @default.
- W4377019217 creator A5023526748 @default.
- W4377019217 creator A5033112541 @default.
- W4377019217 creator A5053815236 @default.
- W4377019217 creator A5073448180 @default.
- W4377019217 creator A5077350073 @default.
- W4377019217 date "2023-05-01" @default.
- W4377019217 modified "2023-09-30" @default.
- W4377019217 title "Transmission Line Audible Noise Prediction Based on CNN-BiLSTM-Attention Method" @default.
- W4377019217 cites W2725858638 @default.
- W4377019217 doi "https://doi.org/10.1088/1742-6596/2503/1/012078" @default.
- W4377019217 hasPublicationYear "2023" @default.
- W4377019217 type Work @default.
- W4377019217 citedByCount "0" @default.
- W4377019217 crossrefType "journal-article" @default.
- W4377019217 hasAuthorship W4377019217A5005179020 @default.
- W4377019217 hasAuthorship W4377019217A5023526748 @default.
- W4377019217 hasAuthorship W4377019217A5033112541 @default.
- W4377019217 hasAuthorship W4377019217A5053815236 @default.
- W4377019217 hasAuthorship W4377019217A5073448180 @default.
- W4377019217 hasAuthorship W4377019217A5077350073 @default.
- W4377019217 hasBestOaLocation W43770192171 @default.
- W4377019217 hasConcept C115961682 @default.
- W4377019217 hasConcept C119599485 @default.
- W4377019217 hasConcept C127413603 @default.
- W4377019217 hasConcept C138885662 @default.
- W4377019217 hasConcept C140311924 @default.
- W4377019217 hasConcept C153180895 @default.
- W4377019217 hasConcept C154945302 @default.
- W4377019217 hasConcept C198352243 @default.
- W4377019217 hasConcept C2524010 @default.
- W4377019217 hasConcept C2776401178 @default.
- W4377019217 hasConcept C33441834 @default.
- W4377019217 hasConcept C33923547 @default.
- W4377019217 hasConcept C41008148 @default.
- W4377019217 hasConcept C41895202 @default.
- W4377019217 hasConcept C50644808 @default.
- W4377019217 hasConcept C761482 @default.
- W4377019217 hasConcept C76155785 @default.
- W4377019217 hasConcept C81363708 @default.
- W4377019217 hasConcept C99498987 @default.
- W4377019217 hasConceptScore W4377019217C115961682 @default.
- W4377019217 hasConceptScore W4377019217C119599485 @default.
- W4377019217 hasConceptScore W4377019217C127413603 @default.
- W4377019217 hasConceptScore W4377019217C138885662 @default.
- W4377019217 hasConceptScore W4377019217C140311924 @default.
- W4377019217 hasConceptScore W4377019217C153180895 @default.
- W4377019217 hasConceptScore W4377019217C154945302 @default.
- W4377019217 hasConceptScore W4377019217C198352243 @default.
- W4377019217 hasConceptScore W4377019217C2524010 @default.
- W4377019217 hasConceptScore W4377019217C2776401178 @default.
- W4377019217 hasConceptScore W4377019217C33441834 @default.
- W4377019217 hasConceptScore W4377019217C33923547 @default.
- W4377019217 hasConceptScore W4377019217C41008148 @default.
- W4377019217 hasConceptScore W4377019217C41895202 @default.
- W4377019217 hasConceptScore W4377019217C50644808 @default.
- W4377019217 hasConceptScore W4377019217C761482 @default.
- W4377019217 hasConceptScore W4377019217C76155785 @default.
- W4377019217 hasConceptScore W4377019217C81363708 @default.
- W4377019217 hasConceptScore W4377019217C99498987 @default.
- W4377019217 hasIssue "1" @default.
- W4377019217 hasLocation W43770192171 @default.
- W4377019217 hasOpenAccess W4377019217 @default.
- W4377019217 hasPrimaryLocation W43770192171 @default.
- W4377019217 hasRelatedWork W2295021132 @default.
- W4377019217 hasRelatedWork W2390120232 @default.
- W4377019217 hasRelatedWork W2546942002 @default.
- W4377019217 hasRelatedWork W2767651786 @default.
- W4377019217 hasRelatedWork W2886673456 @default.
- W4377019217 hasRelatedWork W2912288872 @default.
- W4377019217 hasRelatedWork W2970216048 @default.
- W4377019217 hasRelatedWork W3106036237 @default.
- W4377019217 hasRelatedWork W564581980 @default.
- W4377019217 hasRelatedWork W785854688 @default.
- W4377019217 hasVolume "2503" @default.
- W4377019217 isParatext "false" @default.
- W4377019217 isRetracted "false" @default.
- W4377019217 workType "article" @default.