Matches in SemOpenAlex for { <https://semopenalex.org/work/W4377019614> ?p ?o ?g. }
- W4377019614 endingPage "2023" @default.
- W4377019614 startingPage "00145" @default.
- W4377019614 abstract "The advent of quantitative computed tomography (QCT) and artificial intelligence (AI) using high-resolution computed tomography data has revolutionised the way interstitial diseases are studied. These quantitative methods provide more accurate and precise results compared to prior semiquantitative methods, which were limited by human error such as interobserver disagreement or low reproducibility. The integration of QCT and AI and the development of digital biomarkers has facilitated not only diagnosis but also prognostication and prediction of disease behaviour, not just in idiopathic pulmonary fibrosis in which they were initially studied, but also in other fibrotic lung diseases. These tools provide reproducible, objective prognostic information which may facilitate clinical decision-making. However, despite the benefits of QCT and AI, there are still obstacles that need to be addressed. Important issues include optimal data management, data sharing and maintenance of data privacy. In addition, the development of explainable AI will be essential to develop trust within the medical community and facilitate implementation in routine clinical practice." @default.
- W4377019614 created "2023-05-19" @default.
- W4377019614 creator A5016194066 @default.
- W4377019614 creator A5052668210 @default.
- W4377019614 date "2023-05-18" @default.
- W4377019614 modified "2023-10-01" @default.
- W4377019614 title "Exploring computer-based imaging analysis in interstitial lung disease: opportunities and challenges" @default.
- W4377019614 cites W1835326614 @default.
- W4377019614 cites W1853136581 @default.
- W4377019614 cites W1924766221 @default.
- W4377019614 cites W1970378963 @default.
- W4377019614 cites W1997854995 @default.
- W4377019614 cites W1998471540 @default.
- W4377019614 cites W2032307447 @default.
- W4377019614 cites W203879801 @default.
- W4377019614 cites W2058408736 @default.
- W4377019614 cites W2081772751 @default.
- W4377019614 cites W2095657111 @default.
- W4377019614 cites W2096455579 @default.
- W4377019614 cites W2097548001 @default.
- W4377019614 cites W2113582838 @default.
- W4377019614 cites W2115072985 @default.
- W4377019614 cites W2116531828 @default.
- W4377019614 cites W2138871107 @default.
- W4377019614 cites W2139890009 @default.
- W4377019614 cites W2155709621 @default.
- W4377019614 cites W2167383172 @default.
- W4377019614 cites W2173908789 @default.
- W4377019614 cites W2533186452 @default.
- W4377019614 cites W2548055772 @default.
- W4377019614 cites W2555083835 @default.
- W4377019614 cites W2592551118 @default.
- W4377019614 cites W2612247065 @default.
- W4377019614 cites W2614365993 @default.
- W4377019614 cites W2616806179 @default.
- W4377019614 cites W2626970970 @default.
- W4377019614 cites W2735101727 @default.
- W4377019614 cites W2735134432 @default.
- W4377019614 cites W2799479598 @default.
- W4377019614 cites W2800281426 @default.
- W4377019614 cites W2823263370 @default.
- W4377019614 cites W2888283002 @default.
- W4377019614 cites W2889197569 @default.
- W4377019614 cites W2889742432 @default.
- W4377019614 cites W2891706393 @default.
- W4377019614 cites W2896189647 @default.
- W4377019614 cites W2899171231 @default.
- W4377019614 cites W2899774017 @default.
- W4377019614 cites W2954404000 @default.
- W4377019614 cites W2974960379 @default.
- W4377019614 cites W2975597462 @default.
- W4377019614 cites W2976471405 @default.
- W4377019614 cites W3004706434 @default.
- W4377019614 cites W3007935259 @default.
- W4377019614 cites W3013443134 @default.
- W4377019614 cites W3015182524 @default.
- W4377019614 cites W3029137193 @default.
- W4377019614 cites W3032075591 @default.
- W4377019614 cites W3039168731 @default.
- W4377019614 cites W3081624185 @default.
- W4377019614 cites W3082620512 @default.
- W4377019614 cites W3087600456 @default.
- W4377019614 cites W3108105313 @default.
- W4377019614 cites W3133992406 @default.
- W4377019614 cites W3145332293 @default.
- W4377019614 cites W3160780104 @default.
- W4377019614 cites W3210141494 @default.
- W4377019614 cites W4200187930 @default.
- W4377019614 cites W4211099881 @default.
- W4377019614 cites W4211150982 @default.
- W4377019614 cites W4211185484 @default.
- W4377019614 cites W4220768709 @default.
- W4377019614 cites W4282598920 @default.
- W4377019614 cites W4286485278 @default.
- W4377019614 cites W4287147814 @default.
- W4377019614 cites W4290785539 @default.
- W4377019614 cites W4291010494 @default.
- W4377019614 cites W4292400347 @default.
- W4377019614 cites W4306690009 @default.
- W4377019614 doi "https://doi.org/10.1183/23120541.00145-2023" @default.
- W4377019614 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/37404849" @default.
- W4377019614 hasPublicationYear "2023" @default.
- W4377019614 type Work @default.
- W4377019614 citedByCount "0" @default.
- W4377019614 crossrefType "journal-article" @default.
- W4377019614 hasAuthorship W4377019614A5016194066 @default.
- W4377019614 hasAuthorship W4377019614A5052668210 @default.
- W4377019614 hasBestOaLocation W43770196141 @default.
- W4377019614 hasConcept C126322002 @default.
- W4377019614 hasConcept C126838900 @default.
- W4377019614 hasConcept C142724271 @default.
- W4377019614 hasConcept C154945302 @default.
- W4377019614 hasConcept C1862650 @default.
- W4377019614 hasConcept C19527891 @default.
- W4377019614 hasConcept C202444582 @default.
- W4377019614 hasConcept C2776541429 @default.
- W4377019614 hasConcept C2777425516 @default.
- W4377019614 hasConcept C2777543607 @default.