Matches in SemOpenAlex for { <https://semopenalex.org/work/W4377019727> ?p ?o ?g. }
Showing items 1 to 71 of
71
with 100 items per page.
- W4377019727 endingPage "D100" @default.
- W4377019727 startingPage "D99" @default.
- W4377019727 abstract "Abstract Diagnosis of myocardial fibrosis has a relevant prognostic and therapeutic role. Scar–tissue analysis is commonly performed with late gadolinium contrast–enhanced (CE) cardiac magnetic resonance (CMR). However, CMR might be contraindicated or unavailable. Coronary computed tomography (CCT), which is the technique of choice for many routine assessments, is emerging as an alternative to CMR. The objective of this study is to evaluate whether artificial intelligence (AI) could allow identification of myocardial fibrosis from routine early CE–CCT images. Fifty consecutive patients with left ventricular dysfunction (LVD), who underwent both CE–CMR and (early and late) CE–CCT were retrospectively selected. According to the late enhancement CMR patterns, patients were classified as with ischemic (n=15, 30%) or non–ischemic (n=25, 70%) LVD. Scar regions were manually traced on late CE–CCT using CE–CMR as ground–truth. On early CE–CCT images, the myocardial sectors were extracted according to AHA 16–segment model and labeled as with scar or not based on the late CE–CCT manual tracing. A deep–learning model was developed to classify each sector (Picture 1). Of the initial 44187 sectors computed out of the 8285 slices available from the early CE–CCT images, 4594 sectors (10%) presented scar. The CNN approach on the early CE–CCT images yielded a classification accuracy for all sectors of 71% (95% confidence interval (CI): 63%–79%) obtained through 5–fold cross validation. The mean sensitivity, positive predictive value (PPV) and negative predictive value (NPV) for the testing fold resulted in 73% (95% CI: 66%–79%), 56% (95% CI: 48%–65%) and 85% (95% CI: 82%– 88%), respectively. The mean AUC across the five folds was 76% (95% CI: 72%–81%). In a per–segment analysis of the 16–segment AHA model the bull’s eye segmental comparison of CE–CMR and respective early CE–CCT findings an 91% agreement was achieved (Picture 2). Artificial intelligence can detect both ischemic and non–ischemic myocardial fibrosis from routine noninvasive coronary scans, without additional contrast–agent administration or radiational dose, thus assisting diagnosis and management of patients with LV dysfunction and coronary artery disease." @default.
- W4377019727 created "2023-05-19" @default.
- W4377019727 creator A5000029547 @default.
- W4377019727 creator A5023640033 @default.
- W4377019727 creator A5030252397 @default.
- W4377019727 creator A5036779314 @default.
- W4377019727 creator A5044904917 @default.
- W4377019727 creator A5054128388 @default.
- W4377019727 creator A5067951305 @default.
- W4377019727 creator A5071379214 @default.
- W4377019727 creator A5072026816 @default.
- W4377019727 creator A5079039315 @default.
- W4377019727 creator A5083638676 @default.
- W4377019727 date "2023-05-01" @default.
- W4377019727 modified "2023-09-26" @default.
- W4377019727 title "P153 A DEEP–LEARNING APPROACH FOR SCAR DETECTION IN EARLY CONTRAST–ENHANCED CARDIAC COMPUTED TOMOGRAPHY IMAGES" @default.
- W4377019727 doi "https://doi.org/10.1093/eurheartjsupp/suad111.234" @default.
- W4377019727 hasPublicationYear "2023" @default.
- W4377019727 type Work @default.
- W4377019727 citedByCount "0" @default.
- W4377019727 crossrefType "journal-article" @default.
- W4377019727 hasAuthorship W4377019727A5000029547 @default.
- W4377019727 hasAuthorship W4377019727A5023640033 @default.
- W4377019727 hasAuthorship W4377019727A5030252397 @default.
- W4377019727 hasAuthorship W4377019727A5036779314 @default.
- W4377019727 hasAuthorship W4377019727A5044904917 @default.
- W4377019727 hasAuthorship W4377019727A5054128388 @default.
- W4377019727 hasAuthorship W4377019727A5067951305 @default.
- W4377019727 hasAuthorship W4377019727A5071379214 @default.
- W4377019727 hasAuthorship W4377019727A5072026816 @default.
- W4377019727 hasAuthorship W4377019727A5079039315 @default.
- W4377019727 hasAuthorship W4377019727A5083638676 @default.
- W4377019727 hasBestOaLocation W43770197271 @default.
- W4377019727 hasConcept C126322002 @default.
- W4377019727 hasConcept C126838900 @default.
- W4377019727 hasConcept C143409427 @default.
- W4377019727 hasConcept C164705383 @default.
- W4377019727 hasConcept C2987145844 @default.
- W4377019727 hasConcept C2989005 @default.
- W4377019727 hasConcept C3019719930 @default.
- W4377019727 hasConcept C44249647 @default.
- W4377019727 hasConcept C71924100 @default.
- W4377019727 hasConceptScore W4377019727C126322002 @default.
- W4377019727 hasConceptScore W4377019727C126838900 @default.
- W4377019727 hasConceptScore W4377019727C143409427 @default.
- W4377019727 hasConceptScore W4377019727C164705383 @default.
- W4377019727 hasConceptScore W4377019727C2987145844 @default.
- W4377019727 hasConceptScore W4377019727C2989005 @default.
- W4377019727 hasConceptScore W4377019727C3019719930 @default.
- W4377019727 hasConceptScore W4377019727C44249647 @default.
- W4377019727 hasConceptScore W4377019727C71924100 @default.
- W4377019727 hasIssue "Supplement_D" @default.
- W4377019727 hasLocation W43770197271 @default.
- W4377019727 hasOpenAccess W4377019727 @default.
- W4377019727 hasPrimaryLocation W43770197271 @default.
- W4377019727 hasRelatedWork W1531601525 @default.
- W4377019727 hasRelatedWork W2049214470 @default.
- W4377019727 hasRelatedWork W2730491495 @default.
- W4377019727 hasRelatedWork W2902148150 @default.
- W4377019727 hasRelatedWork W2948807893 @default.
- W4377019727 hasRelatedWork W2959983346 @default.
- W4377019727 hasRelatedWork W3173606202 @default.
- W4377019727 hasRelatedWork W4210785447 @default.
- W4377019727 hasRelatedWork W2778153218 @default.
- W4377019727 hasRelatedWork W3110381201 @default.
- W4377019727 hasVolume "25" @default.
- W4377019727 isParatext "false" @default.
- W4377019727 isRetracted "false" @default.
- W4377019727 workType "article" @default.