Matches in SemOpenAlex for { <https://semopenalex.org/work/W4377019956> ?p ?o ?g. }
- W4377019956 endingPage "616" @default.
- W4377019956 startingPage "596" @default.
- W4377019956 abstract "We propose a family of probabilistic ordinal regression methods for multiple criteria sorting. They employ an additive value function model to aggregate the performances on multiple criteria and the threshold-based procedure to derive the class assignments of alternatives. The Decision Makers (DMs) can provide certain and uncertain assignment examples concerning a subset of reference alternatives, expressing the confidence levels using linguistic descriptions. On the one hand, we introduce Bayesian Ordinal Regression to derive a posterior distribution over a set of all potential sorting models by defining a likelihood for the provided preference information and specifying a prior of the preference model. This distribution emphasizes the potential differences in the models’ abilities to reconstruct the DM’s classification examples and thus is robust to the DM’s potential cognitive biases in her judgments. We also develop a Markov Chain Monte Carlo algorithm to summarize the posterior distribution of the preference model. On the other hand, we adapt Subjective Stochastic Ordinal Regression to sorting problems. It builds a probability distribution over the space of all value functions and class thresholds compatible with the DM’s certain holistic judgments. The ambiguity in representing incomplete and potentially uncertain preference information by the assumed sorting model is quantified using class acceptability indices. We investigate the performance and robustness of the introduced approaches through an extensive experimental study involving real-world datasets. We also compare them against novel methods based on mathematical programming that handle potential inconsistencies in uncertain preferences in the traditional way by minimizing the misclassification error or the number of misclassified reference alternatives." @default.
- W4377019956 created "2023-05-19" @default.
- W4377019956 creator A5018685761 @default.
- W4377019956 creator A5058649133 @default.
- W4377019956 creator A5063295473 @default.
- W4377019956 creator A5070544233 @default.
- W4377019956 date "2023-12-01" @default.
- W4377019956 modified "2023-10-17" @default.
- W4377019956 title "Probabilistic ordinal regression methods for multiple criteria sorting admitting certain and uncertain preferences" @default.
- W4377019956 cites W1967485420 @default.
- W4377019956 cites W1981170844 @default.
- W4377019956 cites W1983872055 @default.
- W4377019956 cites W1985430010 @default.
- W4377019956 cites W1985650891 @default.
- W4377019956 cites W1988211418 @default.
- W4377019956 cites W1998198857 @default.
- W4377019956 cites W1999780932 @default.
- W4377019956 cites W2000414215 @default.
- W4377019956 cites W2001543889 @default.
- W4377019956 cites W2002903596 @default.
- W4377019956 cites W2014264344 @default.
- W4377019956 cites W2052958516 @default.
- W4377019956 cites W2064971197 @default.
- W4377019956 cites W2069807450 @default.
- W4377019956 cites W2073009512 @default.
- W4377019956 cites W2079717418 @default.
- W4377019956 cites W2085345840 @default.
- W4377019956 cites W2125299871 @default.
- W4377019956 cites W2130902307 @default.
- W4377019956 cites W2133556449 @default.
- W4377019956 cites W2146570554 @default.
- W4377019956 cites W2156651772 @default.
- W4377019956 cites W2156989932 @default.
- W4377019956 cites W2211293561 @default.
- W4377019956 cites W2232888710 @default.
- W4377019956 cites W2266559444 @default.
- W4377019956 cites W2311316625 @default.
- W4377019956 cites W2490697653 @default.
- W4377019956 cites W2494926619 @default.
- W4377019956 cites W2517834580 @default.
- W4377019956 cites W2534700146 @default.
- W4377019956 cites W2737246060 @default.
- W4377019956 cites W2893690280 @default.
- W4377019956 cites W2908471060 @default.
- W4377019956 cites W2910435210 @default.
- W4377019956 cites W2911331242 @default.
- W4377019956 cites W2912416780 @default.
- W4377019956 cites W2963754451 @default.
- W4377019956 cites W2972034236 @default.
- W4377019956 cites W2980162940 @default.
- W4377019956 cites W2989457201 @default.
- W4377019956 cites W3002749996 @default.
- W4377019956 cites W3023980653 @default.
- W4377019956 cites W3107879771 @default.
- W4377019956 cites W3118695851 @default.
- W4377019956 cites W3120507617 @default.
- W4377019956 cites W3133030603 @default.
- W4377019956 cites W3203685488 @default.
- W4377019956 cites W371720151 @default.
- W4377019956 cites W4226437591 @default.
- W4377019956 cites W4283731782 @default.
- W4377019956 doi "https://doi.org/10.1016/j.ejor.2023.05.007" @default.
- W4377019956 hasPublicationYear "2023" @default.
- W4377019956 type Work @default.
- W4377019956 citedByCount "1" @default.
- W4377019956 countsByYear W43770199562023 @default.
- W4377019956 crossrefType "journal-article" @default.
- W4377019956 hasAuthorship W4377019956A5018685761 @default.
- W4377019956 hasAuthorship W4377019956A5058649133 @default.
- W4377019956 hasAuthorship W4377019956A5063295473 @default.
- W4377019956 hasAuthorship W4377019956A5070544233 @default.
- W4377019956 hasConcept C105795698 @default.
- W4377019956 hasConcept C107673813 @default.
- W4377019956 hasConcept C110313322 @default.
- W4377019956 hasConcept C111696304 @default.
- W4377019956 hasConcept C11413529 @default.
- W4377019956 hasConcept C119857082 @default.
- W4377019956 hasConcept C126255220 @default.
- W4377019956 hasConcept C154945302 @default.
- W4377019956 hasConcept C177769412 @default.
- W4377019956 hasConcept C199360897 @default.
- W4377019956 hasConcept C2780522230 @default.
- W4377019956 hasConcept C2781249084 @default.
- W4377019956 hasConcept C33923547 @default.
- W4377019956 hasConcept C41008148 @default.
- W4377019956 hasConcept C49937458 @default.
- W4377019956 hasConcept C57830394 @default.
- W4377019956 hasConceptScore W4377019956C105795698 @default.
- W4377019956 hasConceptScore W4377019956C107673813 @default.
- W4377019956 hasConceptScore W4377019956C110313322 @default.
- W4377019956 hasConceptScore W4377019956C111696304 @default.
- W4377019956 hasConceptScore W4377019956C11413529 @default.
- W4377019956 hasConceptScore W4377019956C119857082 @default.
- W4377019956 hasConceptScore W4377019956C126255220 @default.
- W4377019956 hasConceptScore W4377019956C154945302 @default.
- W4377019956 hasConceptScore W4377019956C177769412 @default.
- W4377019956 hasConceptScore W4377019956C199360897 @default.
- W4377019956 hasConceptScore W4377019956C2780522230 @default.