Matches in SemOpenAlex for { <https://semopenalex.org/work/W4377019999> ?p ?o ?g. }
Showing items 1 to 98 of
98
with 100 items per page.
- W4377019999 endingPage "120497" @default.
- W4377019999 startingPage "120497" @default.
- W4377019999 abstract "Nowadays, 3D point cloud is supposed to be the most direct and effective data form for studying plant morphology structure. However, automatic and high-throughput acquisition of accurate individual plant height traits from 3D point cloud remains an urgent challenging problem. Summarizing the related research results in recent years, the factors limiting its application mainly come from these aspects: (1) Many existing methods require spatial auxiliary information such as ground control points (GCP), digital terrain models (DTM) and digital surface models (DSM) to obtain accurate plant height; (2) For 3D point cloud data in different environments, specialized modeling and careful parameter fine-tuning are usually required; (3) Sometimes, the point cloud processing involves the combined utilization of multiple programming languages and software, which is difficult for system integration. Focusing on these challenges, firstly, we proposed a novel end-to-end deep Recurrent Neural Network (RNN) based regression network framework called DRN, which consists of three parts: point cloud feature extraction network, deep RNN and regression network. The convolution operations-based point cloud feature extraction network is function as filtering noise, outliers and redundant information; The deep RNN network with long and short-term memory (LSTM) ability is used to learn the relationships between the feature points on the high-dimensional feature sequence separated by a certain distance; regression network is used to regress the output from deep RNN to plant height value. Experiments results on the 3rd Greenhouse Growing Challenge datasets show that DRN can directly regress the plant height of a single plant effectively without manual operations and the participation of spatial auxiliary information with an R2 of 0.948 and a relative root mean square error (RRMSE) of 10.06% in four different varieties of lettuce at different growth period. After studying the influence of the weights of the x, y, z coordinate of the input 3D point cloud on the regression result, then, we design a Dimension Attention (DA) module at the front end of the feature extraction network to learning the characteristic coordinate weight for every input point cloud sample. The DRN network with a DA module is called D-DRN, experiment results indicate D-DRN tend to achieve better result (R2 =0.960 ; RRMSE=8.680%) than DRN. Considering the end-to-end-based DRN and D-DRN network capable of ease of integration and their considerable prediction accuracy on public datasets, we believe they has a certain complementary effect on the existing study methods of obtaining plant morphological structure phenotype by point cloud data." @default.
- W4377019999 created "2023-05-19" @default.
- W4377019999 creator A5013774822 @default.
- W4377019999 creator A5022248804 @default.
- W4377019999 creator A5027736728 @default.
- W4377019999 creator A5049442940 @default.
- W4377019999 creator A5091972349 @default.
- W4377019999 date "2023-11-01" @default.
- W4377019999 modified "2023-09-30" @default.
- W4377019999 title "Towards End-to-End Deep RNN based Networks to Precisely Regress of the Lettuce Plant Height by Single Perspective Sparse 3D Point Cloud" @default.
- W4377019999 cites W1514378914 @default.
- W4377019999 cites W1991739869 @default.
- W4377019999 cites W2002730835 @default.
- W4377019999 cites W2064636932 @default.
- W4377019999 cites W2064675550 @default.
- W4377019999 cites W2067877300 @default.
- W4377019999 cites W2252833860 @default.
- W4377019999 cites W2585236832 @default.
- W4377019999 cites W2755871013 @default.
- W4377019999 cites W2794329609 @default.
- W4377019999 cites W2894202761 @default.
- W4377019999 cites W2921122163 @default.
- W4377019999 cites W2944419408 @default.
- W4377019999 cites W2946378069 @default.
- W4377019999 cites W2954080612 @default.
- W4377019999 cites W2979750740 @default.
- W4377019999 cites W2990613095 @default.
- W4377019999 cites W2994639114 @default.
- W4377019999 cites W3003488559 @default.
- W4377019999 cites W3024350122 @default.
- W4377019999 cites W3111134030 @default.
- W4377019999 cites W3112929969 @default.
- W4377019999 cites W3155358261 @default.
- W4377019999 cites W3159000790 @default.
- W4377019999 cites W3159516372 @default.
- W4377019999 cites W3174562789 @default.
- W4377019999 cites W4306833423 @default.
- W4377019999 doi "https://doi.org/10.1016/j.eswa.2023.120497" @default.
- W4377019999 hasPublicationYear "2023" @default.
- W4377019999 type Work @default.
- W4377019999 citedByCount "0" @default.
- W4377019999 crossrefType "journal-article" @default.
- W4377019999 hasAuthorship W4377019999A5013774822 @default.
- W4377019999 hasAuthorship W4377019999A5022248804 @default.
- W4377019999 hasAuthorship W4377019999A5027736728 @default.
- W4377019999 hasAuthorship W4377019999A5049442940 @default.
- W4377019999 hasAuthorship W4377019999A5091972349 @default.
- W4377019999 hasConcept C108583219 @default.
- W4377019999 hasConcept C111919701 @default.
- W4377019999 hasConcept C119857082 @default.
- W4377019999 hasConcept C124101348 @default.
- W4377019999 hasConcept C131979681 @default.
- W4377019999 hasConcept C138885662 @default.
- W4377019999 hasConcept C147168706 @default.
- W4377019999 hasConcept C153180895 @default.
- W4377019999 hasConcept C154945302 @default.
- W4377019999 hasConcept C2776401178 @default.
- W4377019999 hasConcept C41008148 @default.
- W4377019999 hasConcept C41895202 @default.
- W4377019999 hasConcept C50644808 @default.
- W4377019999 hasConcept C52622490 @default.
- W4377019999 hasConcept C79337645 @default.
- W4377019999 hasConcept C79974875 @default.
- W4377019999 hasConceptScore W4377019999C108583219 @default.
- W4377019999 hasConceptScore W4377019999C111919701 @default.
- W4377019999 hasConceptScore W4377019999C119857082 @default.
- W4377019999 hasConceptScore W4377019999C124101348 @default.
- W4377019999 hasConceptScore W4377019999C131979681 @default.
- W4377019999 hasConceptScore W4377019999C138885662 @default.
- W4377019999 hasConceptScore W4377019999C147168706 @default.
- W4377019999 hasConceptScore W4377019999C153180895 @default.
- W4377019999 hasConceptScore W4377019999C154945302 @default.
- W4377019999 hasConceptScore W4377019999C2776401178 @default.
- W4377019999 hasConceptScore W4377019999C41008148 @default.
- W4377019999 hasConceptScore W4377019999C41895202 @default.
- W4377019999 hasConceptScore W4377019999C50644808 @default.
- W4377019999 hasConceptScore W4377019999C52622490 @default.
- W4377019999 hasConceptScore W4377019999C79337645 @default.
- W4377019999 hasConceptScore W4377019999C79974875 @default.
- W4377019999 hasLocation W43770199991 @default.
- W4377019999 hasOpenAccess W4377019999 @default.
- W4377019999 hasPrimaryLocation W43770199991 @default.
- W4377019999 hasRelatedWork W2016461833 @default.
- W4377019999 hasRelatedWork W2546942002 @default.
- W4377019999 hasRelatedWork W2733060750 @default.
- W4377019999 hasRelatedWork W2773120646 @default.
- W4377019999 hasRelatedWork W2793022090 @default.
- W4377019999 hasRelatedWork W2919358988 @default.
- W4377019999 hasRelatedWork W2946016983 @default.
- W4377019999 hasRelatedWork W3156786002 @default.
- W4377019999 hasRelatedWork W4298168912 @default.
- W4377019999 hasRelatedWork W4317987726 @default.
- W4377019999 hasVolume "229" @default.
- W4377019999 isParatext "false" @default.
- W4377019999 isRetracted "false" @default.
- W4377019999 workType "article" @default.