Matches in SemOpenAlex for { <https://semopenalex.org/work/W4377021089> ?p ?o ?g. }
- W4377021089 endingPage "590" @default.
- W4377021089 startingPage "567" @default.
- W4377021089 abstract "A crucial role in the theory of uncertainty quantification (UQ) of PDEs is played by the regularity of the solution with respect to the stochastic parameters; indeed, a key property one seeks to establish is that the solution is holomorphic with respect to (the complex extensions of) the parameters. In the context of UQ for the high-frequency Helmholtz equation, a natural question is therefore: how does this parametric holomorphy depend on the wavenumber ? The recent paper [35] showed for a particular nontrapping variable-coefficient Helmholtz problem with affine dependence of the coefficients on the stochastic parameters that the solution operator can be analytically continued a distance into the complex plane. In this paper, we generalize the result in [35] about -explicit parametric holomorphy to a much wider class of Helmholtz problems with arbitrary (holomorphic) dependence on the stochastic parameters; we show that in all cases the region of parametric holomorphy decreases with and show how the rate of decrease with is dictated by whether the unperturbed Helmholtz problem is trapping or nontrapping. We then give examples of both trapping and nontrapping problems where these bounds on the rate of decrease with of the region of parametric holomorphy are sharp, with the trapping examples coming from the recent results of [31]. An immediate implication of these results is that the -dependent restrictions imposed on the randomness in the analysis of quasi-Monte Carlo methods in [35] arise from a genuine feature of the Helmholtz equation with large (and not, for example, a suboptimal bound)." @default.
- W4377021089 created "2023-05-19" @default.
- W4377021089 creator A5083248653 @default.
- W4377021089 creator A5085412939 @default.
- W4377021089 date "2023-05-18" @default.
- W4377021089 modified "2023-09-29" @default.
- W4377021089 title "Wavenumber-Explicit Parametric Holomorphy of Helmholtz Solutions in the Context of Uncertainty Quantification" @default.
- W4377021089 cites W1547668606 @default.
- W4377021089 cites W1553133944 @default.
- W4377021089 cites W1689157804 @default.
- W4377021089 cites W177735991 @default.
- W4377021089 cites W1841946101 @default.
- W4377021089 cites W1971551140 @default.
- W4377021089 cites W1975539104 @default.
- W4377021089 cites W2005712362 @default.
- W4377021089 cites W2015109824 @default.
- W4377021089 cites W2022700471 @default.
- W4377021089 cites W2026718533 @default.
- W4377021089 cites W2029966922 @default.
- W4377021089 cites W2030470940 @default.
- W4377021089 cites W2030473241 @default.
- W4377021089 cites W2037475392 @default.
- W4377021089 cites W2041226551 @default.
- W4377021089 cites W2041509689 @default.
- W4377021089 cites W2049222546 @default.
- W4377021089 cites W2049945147 @default.
- W4377021089 cites W2057549650 @default.
- W4377021089 cites W2061909310 @default.
- W4377021089 cites W2068769534 @default.
- W4377021089 cites W2082282370 @default.
- W4377021089 cites W2084991940 @default.
- W4377021089 cites W2100863906 @default.
- W4377021089 cites W2107692173 @default.
- W4377021089 cites W2111418102 @default.
- W4377021089 cites W2115850109 @default.
- W4377021089 cites W2118720823 @default.
- W4377021089 cites W2131848556 @default.
- W4377021089 cites W2261377471 @default.
- W4377021089 cites W2309356035 @default.
- W4377021089 cites W2329341228 @default.
- W4377021089 cites W2336649755 @default.
- W4377021089 cites W2490999188 @default.
- W4377021089 cites W2522648897 @default.
- W4377021089 cites W2559327389 @default.
- W4377021089 cites W2735105826 @default.
- W4377021089 cites W2766032877 @default.
- W4377021089 cites W2792017407 @default.
- W4377021089 cites W2883486956 @default.
- W4377021089 cites W2898732677 @default.
- W4377021089 cites W2943167654 @default.
- W4377021089 cites W2949048323 @default.
- W4377021089 cites W2949834607 @default.
- W4377021089 cites W2962912871 @default.
- W4377021089 cites W2963129128 @default.
- W4377021089 cites W2963223245 @default.
- W4377021089 cites W2963592159 @default.
- W4377021089 cites W2999108449 @default.
- W4377021089 cites W3007599500 @default.
- W4377021089 cites W3015507268 @default.
- W4377021089 cites W3021293439 @default.
- W4377021089 cites W3023950141 @default.
- W4377021089 cites W3024688492 @default.
- W4377021089 cites W3082338525 @default.
- W4377021089 cites W3102723444 @default.
- W4377021089 cites W3105230084 @default.
- W4377021089 cites W3121322459 @default.
- W4377021089 cites W3126586890 @default.
- W4377021089 cites W3184294135 @default.
- W4377021089 cites W3194926902 @default.
- W4377021089 cites W3208590247 @default.
- W4377021089 cites W3216945074 @default.
- W4377021089 cites W4241640491 @default.
- W4377021089 cites W4292079583 @default.
- W4377021089 doi "https://doi.org/10.1137/22m1486170" @default.
- W4377021089 hasPublicationYear "2023" @default.
- W4377021089 type Work @default.
- W4377021089 citedByCount "0" @default.
- W4377021089 crossrefType "journal-article" @default.
- W4377021089 hasAuthorship W4377021089A5083248653 @default.
- W4377021089 hasAuthorship W4377021089A5085412939 @default.
- W4377021089 hasBestOaLocation W43770210892 @default.
- W4377021089 hasConcept C105795698 @default.
- W4377021089 hasConcept C117251300 @default.
- W4377021089 hasConcept C121332964 @default.
- W4377021089 hasConcept C134306372 @default.
- W4377021089 hasConcept C151730666 @default.
- W4377021089 hasConcept C182310444 @default.
- W4377021089 hasConcept C18591234 @default.
- W4377021089 hasConcept C204575570 @default.
- W4377021089 hasConcept C27592594 @default.
- W4377021089 hasConcept C2779343474 @default.
- W4377021089 hasConcept C28826006 @default.
- W4377021089 hasConcept C32230216 @default.
- W4377021089 hasConcept C33923547 @default.
- W4377021089 hasConcept C39943821 @default.
- W4377021089 hasConcept C62520636 @default.
- W4377021089 hasConcept C86803240 @default.
- W4377021089 hasConceptScore W4377021089C105795698 @default.