Matches in SemOpenAlex for { <https://semopenalex.org/work/W4377022719> ?p ?o ?g. }
Showing items 1 to 68 of
68
with 100 items per page.
- W4377022719 abstract "Water distribution systems (WDSs) deliver clean, safe drinking water to consumers, providing an essential service to constituents. WDSs are increasingly at risk of contamination due to aging infrastructure and intentional acts that are possible through cyber-physical vulnerabilities. Identifying the source of a contamination event is challenging due to limited system-wide water quality monitoring and non-uniqueness present in solving inverse problems to identify source characteristics. In addition, changes in the expected demand patterns that are caused by, for example, social distancing during a pandemic, adoption of water conservation behaviors, or use of decentralized water sources can change the anticipated propagation of contaminant plumes in a network. This research develops a computational framework to characterize contamination sources using machine learning (ML) techniques and simulate water demands and human exposure to a contaminant using agent-based modeling (ABM). An ABM framework is developed to simulate demand changes during the COVID-19 pandemic. The ABM simulates population movement dynamics, transmission of COVID-19 within a community, decisions to social distance, and changes in demands that occur due to social distancing decisions. The ABM is coupled with a hydraulic simulation model, which calculates flows in the network to simulate the movement of a contaminant plume in the network for several contamination event scenarios. ML algorithms are applied to determine the location of source nodes. Research results demonstrate that ML using random forests can identify source nodes based on inline and mobile sensor data. Sensitivity analysis is conducted to explore the number of mobile sensors that are needed to accurately identify the source node. Rapidly identifying contamination source nodes can increase the speed of response to a contamination event, reducing the impact to the community and increasing the resiliency of WDSs during periods of changing demands." @default.
- W4377022719 created "2023-05-19" @default.
- W4377022719 creator A5048320201 @default.
- W4377022719 creator A5081770291 @default.
- W4377022719 creator A5082127309 @default.
- W4377022719 creator A5091007059 @default.
- W4377022719 date "2023-05-18" @default.
- W4377022719 modified "2023-09-23" @default.
- W4377022719 title "Coupling Machine Learning and Agent-Based Modeling to Characterize Contamination Sources in Water Distribution Systems for Changing Demand Regimes" @default.
- W4377022719 cites W1547251944 @default.
- W4377022719 cites W2114559811 @default.
- W4377022719 cites W2794578999 @default.
- W4377022719 cites W3020879404 @default.
- W4377022719 cites W3090702260 @default.
- W4377022719 cites W3105170313 @default.
- W4377022719 cites W3126229686 @default.
- W4377022719 cites W3133886715 @default.
- W4377022719 cites W3186633320 @default.
- W4377022719 cites W3214180331 @default.
- W4377022719 cites W3217637379 @default.
- W4377022719 cites W4205641892 @default.
- W4377022719 cites W4210281388 @default.
- W4377022719 cites W4220888801 @default.
- W4377022719 cites W4224005380 @default.
- W4377022719 cites W4281858970 @default.
- W4377022719 doi "https://doi.org/10.1061/9780784484852.082" @default.
- W4377022719 hasPublicationYear "2023" @default.
- W4377022719 type Work @default.
- W4377022719 citedByCount "0" @default.
- W4377022719 crossrefType "proceedings-article" @default.
- W4377022719 hasAuthorship W4377022719A5048320201 @default.
- W4377022719 hasAuthorship W4377022719A5081770291 @default.
- W4377022719 hasAuthorship W4377022719A5082127309 @default.
- W4377022719 hasAuthorship W4377022719A5091007059 @default.
- W4377022719 hasConcept C120314980 @default.
- W4377022719 hasConcept C121332964 @default.
- W4377022719 hasConcept C144024400 @default.
- W4377022719 hasConcept C149923435 @default.
- W4377022719 hasConcept C2779662365 @default.
- W4377022719 hasConcept C2908647359 @default.
- W4377022719 hasConcept C39432304 @default.
- W4377022719 hasConcept C41008148 @default.
- W4377022719 hasConcept C62520636 @default.
- W4377022719 hasConceptScore W4377022719C120314980 @default.
- W4377022719 hasConceptScore W4377022719C121332964 @default.
- W4377022719 hasConceptScore W4377022719C144024400 @default.
- W4377022719 hasConceptScore W4377022719C149923435 @default.
- W4377022719 hasConceptScore W4377022719C2779662365 @default.
- W4377022719 hasConceptScore W4377022719C2908647359 @default.
- W4377022719 hasConceptScore W4377022719C39432304 @default.
- W4377022719 hasConceptScore W4377022719C41008148 @default.
- W4377022719 hasConceptScore W4377022719C62520636 @default.
- W4377022719 hasLocation W43770227191 @default.
- W4377022719 hasOpenAccess W4377022719 @default.
- W4377022719 hasPrimaryLocation W43770227191 @default.
- W4377022719 hasRelatedWork W1485627940 @default.
- W4377022719 hasRelatedWork W1587227328 @default.
- W4377022719 hasRelatedWork W1596201972 @default.
- W4377022719 hasRelatedWork W1596615495 @default.
- W4377022719 hasRelatedWork W1967954938 @default.
- W4377022719 hasRelatedWork W2028061998 @default.
- W4377022719 hasRelatedWork W2043789664 @default.
- W4377022719 hasRelatedWork W2160425906 @default.
- W4377022719 hasRelatedWork W2899084033 @default.
- W4377022719 hasRelatedWork W2998813341 @default.
- W4377022719 isParatext "false" @default.
- W4377022719 isRetracted "false" @default.
- W4377022719 workType "article" @default.