Matches in SemOpenAlex for { <https://semopenalex.org/work/W4377023645> ?p ?o ?g. }
- W4377023645 abstract "Abstract In this paper, we discuss the convergence of recent advances in deep neural networks (DNNs) with the design of robotic mechanisms, which entails the conceptualization of the design problem as a learning problem from the space of design specifications to a parameterization of the space of mechanisms. We identify three key inter-related problems that are at the forefront of using the versatility of DNNs in solving mechanism design problems. The first problem is that of representation of mechanisms and their design specifications, where the representation challenges arise primarily from the non-Euclidean nature of the data. The second problem is that of developing a mapping from the space of design specifications to the mechanisms where, ideally, we would like to synthesize both type and dimensions of the mechanism for a wide variety of design specifications including path synthesis, motion synthesis, constraints on pivot locations, etc. The third problem is that of designing the neural network architecture for end-to-end training and generation of multiple candidate mechanisms for a given design specification. We also present a brief overview of the state-of-the-art on each of these problems and identify questions of potential interest to the research community." @default.
- W4377023645 created "2023-05-19" @default.
- W4377023645 creator A5008577423 @default.
- W4377023645 creator A5065218703 @default.
- W4377023645 date "2023-06-05" @default.
- W4377023645 modified "2023-09-29" @default.
- W4377023645 title "Deep Learning-Driven Design of Robot Mechanisms" @default.
- W4377023645 cites W1920271276 @default.
- W4377023645 cites W1988115241 @default.
- W4377023645 cites W2002126584 @default.
- W4377023645 cites W2007750701 @default.
- W4377023645 cites W2019813067 @default.
- W4377023645 cites W2022113671 @default.
- W4377023645 cites W2051004173 @default.
- W4377023645 cites W2063347381 @default.
- W4377023645 cites W2074865067 @default.
- W4377023645 cites W2090126541 @default.
- W4377023645 cites W2108085713 @default.
- W4377023645 cites W2116341502 @default.
- W4377023645 cites W2137983211 @default.
- W4377023645 cites W2163922914 @default.
- W4377023645 cites W2344013486 @default.
- W4377023645 cites W2345803705 @default.
- W4377023645 cites W2558748708 @default.
- W4377023645 cites W2565120523 @default.
- W4377023645 cites W2585475677 @default.
- W4377023645 cites W2618530766 @default.
- W4377023645 cites W2620018407 @default.
- W4377023645 cites W2765508278 @default.
- W4377023645 cites W2765811365 @default.
- W4377023645 cites W2892823399 @default.
- W4377023645 cites W2899283552 @default.
- W4377023645 cites W2905547290 @default.
- W4377023645 cites W2919115771 @default.
- W4377023645 cites W2948978827 @default.
- W4377023645 cites W2963626582 @default.
- W4377023645 cites W2980723354 @default.
- W4377023645 cites W2989767011 @default.
- W4377023645 cites W3003365801 @default.
- W4377023645 cites W3007015728 @default.
- W4377023645 cites W3008606616 @default.
- W4377023645 cites W3084949012 @default.
- W4377023645 cites W3141443221 @default.
- W4377023645 cites W3163993681 @default.
- W4377023645 cites W3186623958 @default.
- W4377023645 cites W4213349615 @default.
- W4377023645 cites W4231954495 @default.
- W4377023645 cites W4256544956 @default.
- W4377023645 cites W95351342 @default.
- W4377023645 doi "https://doi.org/10.1115/1.4062542" @default.
- W4377023645 hasPublicationYear "2023" @default.
- W4377023645 type Work @default.
- W4377023645 citedByCount "0" @default.
- W4377023645 crossrefType "journal-article" @default.
- W4377023645 hasAuthorship W4377023645A5008577423 @default.
- W4377023645 hasAuthorship W4377023645A5065218703 @default.
- W4377023645 hasConcept C111472728 @default.
- W4377023645 hasConcept C119857082 @default.
- W4377023645 hasConcept C120314980 @default.
- W4377023645 hasConcept C136197465 @default.
- W4377023645 hasConcept C138885662 @default.
- W4377023645 hasConcept C154945302 @default.
- W4377023645 hasConcept C17744445 @default.
- W4377023645 hasConcept C199539241 @default.
- W4377023645 hasConcept C2776359362 @default.
- W4377023645 hasConcept C41008148 @default.
- W4377023645 hasConcept C80444323 @default.
- W4377023645 hasConcept C89611455 @default.
- W4377023645 hasConcept C90734943 @default.
- W4377023645 hasConcept C94625758 @default.
- W4377023645 hasConceptScore W4377023645C111472728 @default.
- W4377023645 hasConceptScore W4377023645C119857082 @default.
- W4377023645 hasConceptScore W4377023645C120314980 @default.
- W4377023645 hasConceptScore W4377023645C136197465 @default.
- W4377023645 hasConceptScore W4377023645C138885662 @default.
- W4377023645 hasConceptScore W4377023645C154945302 @default.
- W4377023645 hasConceptScore W4377023645C17744445 @default.
- W4377023645 hasConceptScore W4377023645C199539241 @default.
- W4377023645 hasConceptScore W4377023645C2776359362 @default.
- W4377023645 hasConceptScore W4377023645C41008148 @default.
- W4377023645 hasConceptScore W4377023645C80444323 @default.
- W4377023645 hasConceptScore W4377023645C89611455 @default.
- W4377023645 hasConceptScore W4377023645C90734943 @default.
- W4377023645 hasConceptScore W4377023645C94625758 @default.
- W4377023645 hasFunder F4320337391 @default.
- W4377023645 hasFunder F4320337396 @default.
- W4377023645 hasIssue "6" @default.
- W4377023645 hasLocation W43770236451 @default.
- W4377023645 hasOpenAccess W4377023645 @default.
- W4377023645 hasPrimaryLocation W43770236451 @default.
- W4377023645 hasRelatedWork W1587227328 @default.
- W4377023645 hasRelatedWork W1967127745 @default.
- W4377023645 hasRelatedWork W2023998306 @default.
- W4377023645 hasRelatedWork W2462264315 @default.
- W4377023645 hasRelatedWork W2900936690 @default.
- W4377023645 hasRelatedWork W2961085424 @default.
- W4377023645 hasRelatedWork W2998813341 @default.
- W4377023645 hasRelatedWork W4286629047 @default.
- W4377023645 hasRelatedWork W4306674287 @default.
- W4377023645 hasRelatedWork W4224009465 @default.