Matches in SemOpenAlex for { <https://semopenalex.org/work/W4377029756> ?p ?o ?g. }
Showing items 1 to 65 of
65
with 100 items per page.
- W4377029756 abstract "Urban user water demand prediction (WDP) is of significant importance for smart water supply system, which can provide a strong decision-making basis for the dispatching and management of smart water supply system. However, owing to the fluctuation, intermittence and nonstationarity of the user’s water consumption in urban buildings, it is extremely difficult to predict accurately. Therefore, a novel short-term WDP model (Singular Spectrum Analysis Convolutional Neural Network Bidirectional Gate Recurrent Unit, SSA-CNN-BiGRU) is proposed to promote the stability and accuracy of WDP, which successfully introduces organic combinations including deep learning, decomposition technique, and data partitioning policies into the domain of WDP. First, raw data are decomposed into components that carry distinct frequency signals for weakening its nonstationarity and complexity. Then, all the components are automatically divided into several groups using clustering algorithm based on their entropy, after which deep learning method is adopted to predict by groups. Finally, the predicted result of each group is summed up to be fused as the final value. To validate the predictive performance of SSA-CNN-BiGRU, real data have been selected for this study. In experiments, SSA-CNN-BiGRU achieved a fitting of 94.73%. Comparison by relevant evaluation metrics demonstrates that the proposed model exhibits superior performance, thus providing a more accurate basis for WDP." @default.
- W4377029756 created "2023-05-19" @default.
- W4377029756 creator A5027394471 @default.
- W4377029756 creator A5032593614 @default.
- W4377029756 creator A5040562596 @default.
- W4377029756 creator A5049934842 @default.
- W4377029756 creator A5083552827 @default.
- W4377029756 date "2023-06-27" @default.
- W4377029756 modified "2023-09-24" @default.
- W4377029756 title "A Novel Model Based on Deep Learning Approach Combining Data Decomposition Technique and Grouping Distribution Strategy for Water Demand Forecasting of Urban Users" @default.
- W4377029756 doi "https://doi.org/10.1142/s0218126624500075" @default.
- W4377029756 hasPublicationYear "2023" @default.
- W4377029756 type Work @default.
- W4377029756 citedByCount "0" @default.
- W4377029756 crossrefType "journal-article" @default.
- W4377029756 hasAuthorship W4377029756A5027394471 @default.
- W4377029756 hasAuthorship W4377029756A5032593614 @default.
- W4377029756 hasAuthorship W4377029756A5040562596 @default.
- W4377029756 hasAuthorship W4377029756A5049934842 @default.
- W4377029756 hasAuthorship W4377029756A5083552827 @default.
- W4377029756 hasConcept C106301342 @default.
- W4377029756 hasConcept C108583219 @default.
- W4377029756 hasConcept C112972136 @default.
- W4377029756 hasConcept C119857082 @default.
- W4377029756 hasConcept C121332964 @default.
- W4377029756 hasConcept C124101348 @default.
- W4377029756 hasConcept C132964779 @default.
- W4377029756 hasConcept C153180895 @default.
- W4377029756 hasConcept C154945302 @default.
- W4377029756 hasConcept C199360897 @default.
- W4377029756 hasConcept C41008148 @default.
- W4377029756 hasConcept C62520636 @default.
- W4377029756 hasConcept C73555534 @default.
- W4377029756 hasConcept C81363708 @default.
- W4377029756 hasConceptScore W4377029756C106301342 @default.
- W4377029756 hasConceptScore W4377029756C108583219 @default.
- W4377029756 hasConceptScore W4377029756C112972136 @default.
- W4377029756 hasConceptScore W4377029756C119857082 @default.
- W4377029756 hasConceptScore W4377029756C121332964 @default.
- W4377029756 hasConceptScore W4377029756C124101348 @default.
- W4377029756 hasConceptScore W4377029756C132964779 @default.
- W4377029756 hasConceptScore W4377029756C153180895 @default.
- W4377029756 hasConceptScore W4377029756C154945302 @default.
- W4377029756 hasConceptScore W4377029756C199360897 @default.
- W4377029756 hasConceptScore W4377029756C41008148 @default.
- W4377029756 hasConceptScore W4377029756C62520636 @default.
- W4377029756 hasConceptScore W4377029756C73555534 @default.
- W4377029756 hasConceptScore W4377029756C81363708 @default.
- W4377029756 hasFunder F4320321001 @default.
- W4377029756 hasLocation W43770297561 @default.
- W4377029756 hasOpenAccess W4377029756 @default.
- W4377029756 hasPrimaryLocation W43770297561 @default.
- W4377029756 hasRelatedWork W2337926734 @default.
- W4377029756 hasRelatedWork W2738221750 @default.
- W4377029756 hasRelatedWork W3156786002 @default.
- W4377029756 hasRelatedWork W4246751904 @default.
- W4377029756 hasRelatedWork W4319994054 @default.
- W4377029756 hasRelatedWork W4320802194 @default.
- W4377029756 hasRelatedWork W4366224123 @default.
- W4377029756 hasRelatedWork W4381487685 @default.
- W4377029756 hasRelatedWork W4381832759 @default.
- W4377029756 hasRelatedWork W564581980 @default.
- W4377029756 isParatext "false" @default.
- W4377029756 isRetracted "false" @default.
- W4377029756 workType "article" @default.