Matches in SemOpenAlex for { <https://semopenalex.org/work/W4377030734> ?p ?o ?g. }
- W4377030734 endingPage "113051" @default.
- W4377030734 startingPage "113051" @default.
- W4377030734 abstract "The applications of modern length and angle metrology continue to pose new challenges for manufacturers and operators of measuring equipment, starting from nano scale. One method to support measurement processes is the use of artificial intelligence. As an essential part of Industry 4.0 and Metrology 4.0 strategies, it actively supports humans in executing measurement activities. The use of artificial intelligence in this area is determined by technological and social factors, as the shortage of highly skilled operators is becoming increasingly acute. The paper discusses the possibilities of using artificial intelligence in coordinate metrology. Ideas including the selection of the measurement strategy, conditions, filtering techniques, as well as self-verification or even self-calibration were presented. Schemes of procedures using local and global databases of applications and measuring instruments are presented. A new area application in the analysis of interference fringes is shown, with method descriptions and experimental results." @default.
- W4377030734 created "2023-05-19" @default.
- W4377030734 creator A5001034444 @default.
- W4377030734 creator A5042285361 @default.
- W4377030734 creator A5043444372 @default.
- W4377030734 creator A5061014336 @default.
- W4377030734 creator A5071239103 @default.
- W4377030734 creator A5082416494 @default.
- W4377030734 date "2023-08-01" @default.
- W4377030734 modified "2023-10-17" @default.
- W4377030734 title "A novel approach to using artificial intelligence in coordinate metrology including nano scale" @default.
- W4377030734 cites W1855919853 @default.
- W4377030734 cites W1965406737 @default.
- W4377030734 cites W1972986438 @default.
- W4377030734 cites W1976661461 @default.
- W4377030734 cites W2002448723 @default.
- W4377030734 cites W2005877441 @default.
- W4377030734 cites W2011037009 @default.
- W4377030734 cites W2026744783 @default.
- W4377030734 cites W2028544373 @default.
- W4377030734 cites W2063343086 @default.
- W4377030734 cites W2065917308 @default.
- W4377030734 cites W2077791767 @default.
- W4377030734 cites W2087082746 @default.
- W4377030734 cites W2094603620 @default.
- W4377030734 cites W2122534644 @default.
- W4377030734 cites W2122865181 @default.
- W4377030734 cites W2126385963 @default.
- W4377030734 cites W2129440600 @default.
- W4377030734 cites W2153190504 @default.
- W4377030734 cites W2421506071 @default.
- W4377030734 cites W2562408567 @default.
- W4377030734 cites W2565271533 @default.
- W4377030734 cites W2565390741 @default.
- W4377030734 cites W2736228984 @default.
- W4377030734 cites W2761756856 @default.
- W4377030734 cites W2780360157 @default.
- W4377030734 cites W2804233265 @default.
- W4377030734 cites W2883355261 @default.
- W4377030734 cites W2943900040 @default.
- W4377030734 cites W2997457044 @default.
- W4377030734 cites W3014141796 @default.
- W4377030734 cites W3031881808 @default.
- W4377030734 cites W3036336028 @default.
- W4377030734 cites W3045333323 @default.
- W4377030734 cites W3088934874 @default.
- W4377030734 cites W3093446992 @default.
- W4377030734 cites W3106714810 @default.
- W4377030734 cites W3114333391 @default.
- W4377030734 cites W3129301064 @default.
- W4377030734 cites W3135357148 @default.
- W4377030734 cites W3170026154 @default.
- W4377030734 cites W3172295821 @default.
- W4377030734 cites W3176461199 @default.
- W4377030734 cites W3200187015 @default.
- W4377030734 cites W4206516669 @default.
- W4377030734 cites W4224010349 @default.
- W4377030734 cites W4226451590 @default.
- W4377030734 cites W4311035423 @default.
- W4377030734 doi "https://doi.org/10.1016/j.measurement.2023.113051" @default.
- W4377030734 hasPublicationYear "2023" @default.
- W4377030734 type Work @default.
- W4377030734 citedByCount "0" @default.
- W4377030734 crossrefType "journal-article" @default.
- W4377030734 hasAuthorship W4377030734A5001034444 @default.
- W4377030734 hasAuthorship W4377030734A5042285361 @default.
- W4377030734 hasAuthorship W4377030734A5043444372 @default.
- W4377030734 hasAuthorship W4377030734A5061014336 @default.
- W4377030734 hasAuthorship W4377030734A5071239103 @default.
- W4377030734 hasAuthorship W4377030734A5082416494 @default.
- W4377030734 hasConcept C105795698 @default.
- W4377030734 hasConcept C121332964 @default.
- W4377030734 hasConcept C127413603 @default.
- W4377030734 hasConcept C13736549 @default.
- W4377030734 hasConcept C138885662 @default.
- W4377030734 hasConcept C154945302 @default.
- W4377030734 hasConcept C165838908 @default.
- W4377030734 hasConcept C165880335 @default.
- W4377030734 hasConcept C194051981 @default.
- W4377030734 hasConcept C195766429 @default.
- W4377030734 hasConcept C201995342 @default.
- W4377030734 hasConcept C2778137410 @default.
- W4377030734 hasConcept C2778755073 @default.
- W4377030734 hasConcept C33923547 @default.
- W4377030734 hasConcept C41008148 @default.
- W4377030734 hasConcept C41895202 @default.
- W4377030734 hasConcept C62520636 @default.
- W4377030734 hasConceptScore W4377030734C105795698 @default.
- W4377030734 hasConceptScore W4377030734C121332964 @default.
- W4377030734 hasConceptScore W4377030734C127413603 @default.
- W4377030734 hasConceptScore W4377030734C13736549 @default.
- W4377030734 hasConceptScore W4377030734C138885662 @default.
- W4377030734 hasConceptScore W4377030734C154945302 @default.
- W4377030734 hasConceptScore W4377030734C165838908 @default.
- W4377030734 hasConceptScore W4377030734C165880335 @default.
- W4377030734 hasConceptScore W4377030734C194051981 @default.
- W4377030734 hasConceptScore W4377030734C195766429 @default.
- W4377030734 hasConceptScore W4377030734C201995342 @default.