Matches in SemOpenAlex for { <https://semopenalex.org/work/W4377042012> ?p ?o ?g. }
- W4377042012 endingPage "6119" @default.
- W4377042012 startingPage "6119" @default.
- W4377042012 abstract "The labor market has been significantly impacted by the rapidly evolving global landscape, characterized by increased competition, globalization, demographic shifts, and digitization, leading to a demand for new skills and professions. The rapid pace of technological advancements, economic transformations, and changes in workplace practices necessitate that employees continuously adapt to new skill requirements. A quick assessment of these changes enables the identification of skill profiles and the activities of economic fields. This paper aims to utilize natural language processing technologies and data clustering methods to analyze the skill needs of Lithuanian employees, perform a cluster analysis of these skills, and create automated job profiles. The hypothesis that applying natural language processing and clustering in job profile analyzes can allow the real-time assessment of job skill demand changes was investigated. Over five hundred thousand job postings were analyzed to build job/position profiles for further decision-making. In the first stage, data were extracted from the job requirements of entire job advertisement texts. The regex procedure was found to have demonstrated the best results. Data vectorization for initial feature extraction was performed using BERT structure transformers (sentence transformers). Five dimensionality reduction methods were compared, with the UMAP technique producing the best results. The HDBSCAN method proved to be the most effective for clustering, though RCBMIDE also demonstrated a robust performance. Finally, job profile descriptions were generated using generative artificial intelligence based on the compiled job profile skills. Upon expert assessment of the created job profiles and their descriptions, it was concluded that the automated job advertisement analysis algorithm had shown successful results and could therefore be applied in practice." @default.
- W4377042012 created "2023-05-19" @default.
- W4377042012 creator A5019298990 @default.
- W4377042012 creator A5038656821 @default.
- W4377042012 creator A5061479673 @default.
- W4377042012 creator A5067456561 @default.
- W4377042012 creator A5071273324 @default.
- W4377042012 creator A5071860169 @default.
- W4377042012 date "2023-05-16" @default.
- W4377042012 modified "2023-10-14" @default.
- W4377042012 title "Enhancing Skills Demand Understanding through Job Ad Segmentation Using NLP and Clustering Techniques" @default.
- W4377042012 cites W1483072991 @default.
- W4377042012 cites W1987971958 @default.
- W4377042012 cites W2010185677 @default.
- W4377042012 cites W2011430131 @default.
- W4377042012 cites W2051224630 @default.
- W4377042012 cites W2066705378 @default.
- W4377042012 cites W2068632118 @default.
- W4377042012 cites W2085487226 @default.
- W4377042012 cites W2091735588 @default.
- W4377042012 cites W2097335016 @default.
- W4377042012 cites W2117331546 @default.
- W4377042012 cites W2128728535 @default.
- W4377042012 cites W2130623086 @default.
- W4377042012 cites W2156041231 @default.
- W4377042012 cites W2177066871 @default.
- W4377042012 cites W2180566385 @default.
- W4377042012 cites W2250539671 @default.
- W4377042012 cites W2493916176 @default.
- W4377042012 cites W2526781987 @default.
- W4377042012 cites W2574404198 @default.
- W4377042012 cites W2590309175 @default.
- W4377042012 cites W2612865237 @default.
- W4377042012 cites W2613303232 @default.
- W4377042012 cites W2622186323 @default.
- W4377042012 cites W2740924709 @default.
- W4377042012 cites W2776485310 @default.
- W4377042012 cites W2882319491 @default.
- W4377042012 cites W2889326414 @default.
- W4377042012 cites W2894899500 @default.
- W4377042012 cites W2899495124 @default.
- W4377042012 cites W2900378995 @default.
- W4377042012 cites W2902652978 @default.
- W4377042012 cites W2911794652 @default.
- W4377042012 cites W2917662199 @default.
- W4377042012 cites W2946787236 @default.
- W4377042012 cites W2961599828 @default.
- W4377042012 cites W2963318411 @default.
- W4377042012 cites W2970641574 @default.
- W4377042012 cites W2971676549 @default.
- W4377042012 cites W3004785246 @default.
- W4377042012 cites W3011594683 @default.
- W4377042012 cites W3021104090 @default.
- W4377042012 cites W3034723979 @default.
- W4377042012 cites W3127452014 @default.
- W4377042012 cites W3127710218 @default.
- W4377042012 cites W3157916925 @default.
- W4377042012 cites W3171767354 @default.
- W4377042012 cites W4220967417 @default.
- W4377042012 cites W4231029117 @default.
- W4377042012 cites W4281263550 @default.
- W4377042012 cites W4285225959 @default.
- W4377042012 cites W4287093390 @default.
- W4377042012 cites W4318485220 @default.
- W4377042012 doi "https://doi.org/10.3390/app13106119" @default.
- W4377042012 hasPublicationYear "2023" @default.
- W4377042012 type Work @default.
- W4377042012 citedByCount "0" @default.
- W4377042012 crossrefType "journal-article" @default.
- W4377042012 hasAuthorship W4377042012A5019298990 @default.
- W4377042012 hasAuthorship W4377042012A5038656821 @default.
- W4377042012 hasAuthorship W4377042012A5061479673 @default.
- W4377042012 hasAuthorship W4377042012A5067456561 @default.
- W4377042012 hasAuthorship W4377042012A5071273324 @default.
- W4377042012 hasAuthorship W4377042012A5071860169 @default.
- W4377042012 hasBestOaLocation W43770420121 @default.
- W4377042012 hasConcept C119857082 @default.
- W4377042012 hasConcept C13280743 @default.
- W4377042012 hasConcept C154945302 @default.
- W4377042012 hasConcept C15744967 @default.
- W4377042012 hasConcept C204321447 @default.
- W4377042012 hasConcept C205649164 @default.
- W4377042012 hasConcept C2522767166 @default.
- W4377042012 hasConcept C2718322 @default.
- W4377042012 hasConcept C2777526511 @default.
- W4377042012 hasConcept C2779308522 @default.
- W4377042012 hasConcept C31972630 @default.
- W4377042012 hasConcept C41008148 @default.
- W4377042012 hasConcept C58346731 @default.
- W4377042012 hasConcept C73555534 @default.
- W4377042012 hasConcept C77805123 @default.
- W4377042012 hasConceptScore W4377042012C119857082 @default.
- W4377042012 hasConceptScore W4377042012C13280743 @default.
- W4377042012 hasConceptScore W4377042012C154945302 @default.
- W4377042012 hasConceptScore W4377042012C15744967 @default.
- W4377042012 hasConceptScore W4377042012C204321447 @default.
- W4377042012 hasConceptScore W4377042012C205649164 @default.
- W4377042012 hasConceptScore W4377042012C2522767166 @default.