Matches in SemOpenAlex for { <https://semopenalex.org/work/W4377044065> ?p ?o ?g. }
- W4377044065 endingPage "752" @default.
- W4377044065 startingPage "752" @default.
- W4377044065 abstract "Anticipating and understanding cancers' need for specific gene activities is key for novel therapeutic development. Here we utilized DepMap, a cancer gene dependency screen, to demonstrate that machine learning combined with network biology can produce robust algorithms that both predict what genes a cancer is dependent on and what network features coordinate such gene dependencies. Using network topology and biological annotations, we constructed four groups of novel engineered machine learning features that produced high accuracies when predicting binary gene dependencies. We found that in all examined cancer types, F1 scores were greater than 0.90, and model accuracy remained robust under multiple hyperparameter tests. We then deconstructed these models to identify tumor type-specific coordinators of gene dependency and identified that in certain cancers, such as thyroid and kidney, tumors' dependencies are highly predicted by gene connectivity. In contrast, other histologies relied on pathway-based features such as lung, where gene dependencies were highly predictive by associations with cell death pathway genes. In sum, we show that biologically informed network features can be a valuable and robust addition to predictive pharmacology models while simultaneously providing mechanistic insights." @default.
- W4377044065 created "2023-05-19" @default.
- W4377044065 creator A5008452135 @default.
- W4377044065 creator A5009111092 @default.
- W4377044065 creator A5017333974 @default.
- W4377044065 creator A5045083539 @default.
- W4377044065 creator A5048256870 @default.
- W4377044065 creator A5060280906 @default.
- W4377044065 creator A5071622747 @default.
- W4377044065 creator A5072127156 @default.
- W4377044065 creator A5075596275 @default.
- W4377044065 creator A5077352612 @default.
- W4377044065 creator A5091096306 @default.
- W4377044065 date "2023-05-16" @default.
- W4377044065 modified "2023-10-17" @default.
- W4377044065 title "Network Biology-Inspired Machine Learning Features Predict Cancer Gene Targets and Reveal Target Coordinating Mechanisms" @default.
- W4377044065 cites W1635229904 @default.
- W4377044065 cites W2023931764 @default.
- W4377044065 cites W2043398720 @default.
- W4377044065 cites W2054145940 @default.
- W4377044065 cites W2119301589 @default.
- W4377044065 cites W2130790725 @default.
- W4377044065 cites W2154947819 @default.
- W4377044065 cites W2164786997 @default.
- W4377044065 cites W2263739890 @default.
- W4377044065 cites W2570516417 @default.
- W4377044065 cites W2739511077 @default.
- W4377044065 cites W2741508285 @default.
- W4377044065 cites W2765203444 @default.
- W4377044065 cites W2894573839 @default.
- W4377044065 cites W2898789672 @default.
- W4377044065 cites W2914170009 @default.
- W4377044065 cites W2944727022 @default.
- W4377044065 cites W2994966800 @default.
- W4377044065 cites W3001381398 @default.
- W4377044065 cites W3004938514 @default.
- W4377044065 cites W3008659867 @default.
- W4377044065 cites W3095329356 @default.
- W4377044065 cites W3099289621 @default.
- W4377044065 cites W3126722336 @default.
- W4377044065 cites W3135244453 @default.
- W4377044065 cites W3150383426 @default.
- W4377044065 cites W3164485173 @default.
- W4377044065 cites W3176267697 @default.
- W4377044065 cites W3196171893 @default.
- W4377044065 cites W3207977157 @default.
- W4377044065 cites W3212568449 @default.
- W4377044065 cites W3217729113 @default.
- W4377044065 cites W325781386 @default.
- W4377044065 cites W4200497629 @default.
- W4377044065 cites W4200564952 @default.
- W4377044065 cites W4214863934 @default.
- W4377044065 cites W4225977695 @default.
- W4377044065 cites W4282006239 @default.
- W4377044065 cites W4292110737 @default.
- W4377044065 doi "https://doi.org/10.3390/ph16050752" @default.
- W4377044065 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/37242535" @default.
- W4377044065 hasPublicationYear "2023" @default.
- W4377044065 type Work @default.
- W4377044065 citedByCount "0" @default.
- W4377044065 crossrefType "journal-article" @default.
- W4377044065 hasAuthorship W4377044065A5008452135 @default.
- W4377044065 hasAuthorship W4377044065A5009111092 @default.
- W4377044065 hasAuthorship W4377044065A5017333974 @default.
- W4377044065 hasAuthorship W4377044065A5045083539 @default.
- W4377044065 hasAuthorship W4377044065A5048256870 @default.
- W4377044065 hasAuthorship W4377044065A5060280906 @default.
- W4377044065 hasAuthorship W4377044065A5071622747 @default.
- W4377044065 hasAuthorship W4377044065A5072127156 @default.
- W4377044065 hasAuthorship W4377044065A5075596275 @default.
- W4377044065 hasAuthorship W4377044065A5077352612 @default.
- W4377044065 hasAuthorship W4377044065A5091096306 @default.
- W4377044065 hasBestOaLocation W43770440651 @default.
- W4377044065 hasConcept C104317684 @default.
- W4377044065 hasConcept C119857082 @default.
- W4377044065 hasConcept C150194340 @default.
- W4377044065 hasConcept C152662350 @default.
- W4377044065 hasConcept C154945302 @default.
- W4377044065 hasConcept C19768560 @default.
- W4377044065 hasConcept C28225019 @default.
- W4377044065 hasConcept C41008148 @default.
- W4377044065 hasConcept C54355233 @default.
- W4377044065 hasConcept C55105296 @default.
- W4377044065 hasConcept C67339327 @default.
- W4377044065 hasConcept C70721500 @default.
- W4377044065 hasConcept C8642999 @default.
- W4377044065 hasConcept C86803240 @default.
- W4377044065 hasConceptScore W4377044065C104317684 @default.
- W4377044065 hasConceptScore W4377044065C119857082 @default.
- W4377044065 hasConceptScore W4377044065C150194340 @default.
- W4377044065 hasConceptScore W4377044065C152662350 @default.
- W4377044065 hasConceptScore W4377044065C154945302 @default.
- W4377044065 hasConceptScore W4377044065C19768560 @default.
- W4377044065 hasConceptScore W4377044065C28225019 @default.
- W4377044065 hasConceptScore W4377044065C41008148 @default.
- W4377044065 hasConceptScore W4377044065C54355233 @default.
- W4377044065 hasConceptScore W4377044065C55105296 @default.
- W4377044065 hasConceptScore W4377044065C67339327 @default.