Matches in SemOpenAlex for { <https://semopenalex.org/work/W4377079730> ?p ?o ?g. }
- W4377079730 endingPage "2154" @default.
- W4377079730 startingPage "2138" @default.
- W4377079730 abstract "The surging of deep learning brings new vigor and vitality to shape the prospect of intelligent Internet of Things (IoT), and the rise of edge intelligence enables provisioning real-time deep neural network (DNN) inference services for mobile users. To perform efficient and effective DNN model training in edge computing environments while preserving training data security and privacy of IoT devices, federated learning has been envisioned as an ideal learning paradigm for this purpose. In this article, we study energy-aware DNN model training in edge computing. We first formulate a novel energy-aware, Device-to-Device (D2D) assisted federated learning problem with the aim to minimize the global loss of a training DNN model, subject to bandwidth capacity on an edge server and energy capacity on each IoT device. We then devise a near-optimal learning algorithm for the problem when the training data follows the i.i.d. data distribution. The crux of the proposed algorithm is to explore using the energy of neighboring devices of each device for its local model uploading, by reducing the problem to a series of weighted maximum matching problems in corresponding auxiliary graphs. We also consider the problem without the assumption of the i.i.d. data distribution, for which we propose an efficient heuristic algorithm. We finally evaluate the performance of the proposed algorithms through experimental simulations. Experimental results show that the proposed algorithms are promising." @default.
- W4377079730 created "2023-05-20" @default.
- W4377079730 creator A5015993565 @default.
- W4377079730 creator A5019506252 @default.
- W4377079730 creator A5043464306 @default.
- W4377079730 creator A5045982340 @default.
- W4377079730 creator A5051822216 @default.
- W4377079730 creator A5077465517 @default.
- W4377079730 creator A5091976700 @default.
- W4377079730 date "2023-07-01" @default.
- W4377079730 modified "2023-09-30" @default.
- W4377079730 title "Energy-Aware, Device-to-Device Assisted Federated Learning in Edge Computing" @default.
- W4377079730 cites W2112796928 @default.
- W4377079730 cites W2195423816 @default.
- W4377079730 cites W2920031528 @default.
- W4377079730 cites W2963318081 @default.
- W4377079730 cites W2963396074 @default.
- W4377079730 cites W2963697941 @default.
- W4377079730 cites W3045657448 @default.
- W4377079730 cites W3045747588 @default.
- W4377079730 cites W3047565185 @default.
- W4377079730 cites W3048678434 @default.
- W4377079730 cites W3090615085 @default.
- W4377079730 cites W3099980742 @default.
- W4377079730 cites W3105122387 @default.
- W4377079730 cites W3109847748 @default.
- W4377079730 cites W3111182214 @default.
- W4377079730 cites W3141518839 @default.
- W4377079730 cites W3164522852 @default.
- W4377079730 cites W3184838508 @default.
- W4377079730 cites W3214374352 @default.
- W4377079730 cites W4285260612 @default.
- W4377079730 cites W4293195420 @default.
- W4377079730 cites W4306763667 @default.
- W4377079730 cites W4311167339 @default.
- W4377079730 cites W4312138951 @default.
- W4377079730 cites W4312768957 @default.
- W4377079730 cites W4313192747 @default.
- W4377079730 cites W4319069175 @default.
- W4377079730 cites W4319865990 @default.
- W4377079730 cites W4320001239 @default.
- W4377079730 cites W4324291879 @default.
- W4377079730 cites W4327503254 @default.
- W4377079730 cites W4361859665 @default.
- W4377079730 cites W4362714756 @default.
- W4377079730 doi "https://doi.org/10.1109/tpds.2023.3277423" @default.
- W4377079730 hasPublicationYear "2023" @default.
- W4377079730 type Work @default.
- W4377079730 citedByCount "1" @default.
- W4377079730 countsByYear W43770797302023 @default.
- W4377079730 crossrefType "journal-article" @default.
- W4377079730 hasAuthorship W4377079730A5015993565 @default.
- W4377079730 hasAuthorship W4377079730A5019506252 @default.
- W4377079730 hasAuthorship W4377079730A5043464306 @default.
- W4377079730 hasAuthorship W4377079730A5045982340 @default.
- W4377079730 hasAuthorship W4377079730A5051822216 @default.
- W4377079730 hasAuthorship W4377079730A5077465517 @default.
- W4377079730 hasAuthorship W4377079730A5091976700 @default.
- W4377079730 hasConcept C108583219 @default.
- W4377079730 hasConcept C111919701 @default.
- W4377079730 hasConcept C119857082 @default.
- W4377079730 hasConcept C120314980 @default.
- W4377079730 hasConcept C138236772 @default.
- W4377079730 hasConcept C154945302 @default.
- W4377079730 hasConcept C162307627 @default.
- W4377079730 hasConcept C172191483 @default.
- W4377079730 hasConcept C173801870 @default.
- W4377079730 hasConcept C186967261 @default.
- W4377079730 hasConcept C18903297 @default.
- W4377079730 hasConcept C2776061582 @default.
- W4377079730 hasConcept C2776214188 @default.
- W4377079730 hasConcept C2778456923 @default.
- W4377079730 hasConcept C2780165032 @default.
- W4377079730 hasConcept C31258907 @default.
- W4377079730 hasConcept C41008148 @default.
- W4377079730 hasConcept C50644808 @default.
- W4377079730 hasConcept C71901391 @default.
- W4377079730 hasConcept C79974875 @default.
- W4377079730 hasConcept C86803240 @default.
- W4377079730 hasConceptScore W4377079730C108583219 @default.
- W4377079730 hasConceptScore W4377079730C111919701 @default.
- W4377079730 hasConceptScore W4377079730C119857082 @default.
- W4377079730 hasConceptScore W4377079730C120314980 @default.
- W4377079730 hasConceptScore W4377079730C138236772 @default.
- W4377079730 hasConceptScore W4377079730C154945302 @default.
- W4377079730 hasConceptScore W4377079730C162307627 @default.
- W4377079730 hasConceptScore W4377079730C172191483 @default.
- W4377079730 hasConceptScore W4377079730C173801870 @default.
- W4377079730 hasConceptScore W4377079730C186967261 @default.
- W4377079730 hasConceptScore W4377079730C18903297 @default.
- W4377079730 hasConceptScore W4377079730C2776061582 @default.
- W4377079730 hasConceptScore W4377079730C2776214188 @default.
- W4377079730 hasConceptScore W4377079730C2778456923 @default.
- W4377079730 hasConceptScore W4377079730C2780165032 @default.
- W4377079730 hasConceptScore W4377079730C31258907 @default.
- W4377079730 hasConceptScore W4377079730C41008148 @default.
- W4377079730 hasConceptScore W4377079730C50644808 @default.
- W4377079730 hasConceptScore W4377079730C71901391 @default.