Matches in SemOpenAlex for { <https://semopenalex.org/work/W4377079797> ?p ?o ?g. }
- W4377079797 endingPage "4390" @default.
- W4377079797 startingPage "4377" @default.
- W4377079797 abstract "In this paper, we propose an adaptive user pairing (AUP) scheme in multi-intelligent reflecting surface (IRS)-aided massive multiple-input multiple-output (MIMO)-non-orthogonal multiple access (NOMA) networks. In the AUP scheme, two users with different channel conditions are selected for user pairing while multiple IRSs assist to improve received signal quality at users. We consider the problem of jointly optimizing the precoding matrix, the phase shift of IRSs, and the user pairing element to maximize the overall spectral efficiency (SE) subject to the maximum power budget at the base station (BS) and user-specific quality-of-service (QoS). The SE problem formulated as the maximization of non-concave functions involves a mixed-integer program, which is very challenging to solve optimally. To tackle this problem, we first relax the user pairing elements to be continuous and then transform the formulated problem into an equivalent non-convex problem with a more tractable form. We then apply the iterative algorithm (IA) with low complexity to guarantee convergence at a relative optimum. Towards real-time optimization, we propose a deep learning (DL) framework to predict the optimal solution of the precoding matrix, the phase shift of IRSs, and user pairing elements according to the user’s locations and channel gains. Compared to the conventional optimization method, the DL-based optimization framework can achieve the optimal solution within a very short time via an efficient inference process. Numerical results verify that the proposed algorithm improves the SE over state-of-the-art approaches. Moreover, the effects of essential parameters such as the total BS transmit power, the number of UEs, IRSs, and BS’s antennas on the system are discussed and evaluated to show the effectiveness of the proposed scheme in balancing resource utilization." @default.
- W4377079797 created "2023-05-20" @default.
- W4377079797 creator A5021007706 @default.
- W4377079797 creator A5037079266 @default.
- W4377079797 creator A5042167303 @default.
- W4377079797 date "2023-07-01" @default.
- W4377079797 modified "2023-10-12" @default.
- W4377079797 title "Adaptive User Pairing in Multi-IRS-Aided Massive MIMO-NOMA Networks: Spectral Efficiency Maximization and Deep Learning Design" @default.
- W4377079797 cites W1690504809 @default.
- W4377079797 cites W1958281780 @default.
- W4377079797 cites W1969648546 @default.
- W4377079797 cites W2100573451 @default.
- W4377079797 cites W2147601077 @default.
- W4377079797 cites W2343321058 @default.
- W4377079797 cites W2419500842 @default.
- W4377079797 cites W2509696551 @default.
- W4377079797 cites W2587494249 @default.
- W4377079797 cites W2621878961 @default.
- W4377079797 cites W2796194003 @default.
- W4377079797 cites W2882979857 @default.
- W4377079797 cites W2912240366 @default.
- W4377079797 cites W2958815250 @default.
- W4377079797 cites W2969415317 @default.
- W4377079797 cites W2990747873 @default.
- W4377079797 cites W3015594231 @default.
- W4377079797 cites W3025048143 @default.
- W4377079797 cites W3096188699 @default.
- W4377079797 cites W3100075210 @default.
- W4377079797 cites W3129256633 @default.
- W4377079797 cites W3132544971 @default.
- W4377079797 cites W3134205660 @default.
- W4377079797 cites W3161785019 @default.
- W4377079797 cites W3164701389 @default.
- W4377079797 cites W3176423013 @default.
- W4377079797 cites W3200357587 @default.
- W4377079797 cites W3203387279 @default.
- W4377079797 cites W4210660401 @default.
- W4377079797 cites W4312051174 @default.
- W4377079797 doi "https://doi.org/10.1109/tcomm.2023.3277533" @default.
- W4377079797 hasPublicationYear "2023" @default.
- W4377079797 type Work @default.
- W4377079797 citedByCount "2" @default.
- W4377079797 countsByYear W43770797972023 @default.
- W4377079797 crossrefType "journal-article" @default.
- W4377079797 hasAuthorship W4377079797A5021007706 @default.
- W4377079797 hasAuthorship W4377079797A5037079266 @default.
- W4377079797 hasAuthorship W4377079797A5042167303 @default.
- W4377079797 hasConcept C11413529 @default.
- W4377079797 hasConcept C121332964 @default.
- W4377079797 hasConcept C126255220 @default.
- W4377079797 hasConcept C127162648 @default.
- W4377079797 hasConcept C137246740 @default.
- W4377079797 hasConcept C137836250 @default.
- W4377079797 hasConcept C14103023 @default.
- W4377079797 hasConcept C148063708 @default.
- W4377079797 hasConcept C160562895 @default.
- W4377079797 hasConcept C179799912 @default.
- W4377079797 hasConcept C207987634 @default.
- W4377079797 hasConcept C2776330181 @default.
- W4377079797 hasConcept C31258907 @default.
- W4377079797 hasConcept C33923547 @default.
- W4377079797 hasConcept C41008148 @default.
- W4377079797 hasConcept C54101563 @default.
- W4377079797 hasConcept C555944384 @default.
- W4377079797 hasConcept C62520636 @default.
- W4377079797 hasConcept C68649174 @default.
- W4377079797 hasConcept C76155785 @default.
- W4377079797 hasConceptScore W4377079797C11413529 @default.
- W4377079797 hasConceptScore W4377079797C121332964 @default.
- W4377079797 hasConceptScore W4377079797C126255220 @default.
- W4377079797 hasConceptScore W4377079797C127162648 @default.
- W4377079797 hasConceptScore W4377079797C137246740 @default.
- W4377079797 hasConceptScore W4377079797C137836250 @default.
- W4377079797 hasConceptScore W4377079797C14103023 @default.
- W4377079797 hasConceptScore W4377079797C148063708 @default.
- W4377079797 hasConceptScore W4377079797C160562895 @default.
- W4377079797 hasConceptScore W4377079797C179799912 @default.
- W4377079797 hasConceptScore W4377079797C207987634 @default.
- W4377079797 hasConceptScore W4377079797C2776330181 @default.
- W4377079797 hasConceptScore W4377079797C31258907 @default.
- W4377079797 hasConceptScore W4377079797C33923547 @default.
- W4377079797 hasConceptScore W4377079797C41008148 @default.
- W4377079797 hasConceptScore W4377079797C54101563 @default.
- W4377079797 hasConceptScore W4377079797C555944384 @default.
- W4377079797 hasConceptScore W4377079797C62520636 @default.
- W4377079797 hasConceptScore W4377079797C68649174 @default.
- W4377079797 hasConceptScore W4377079797C76155785 @default.
- W4377079797 hasFunder F4320322120 @default.
- W4377079797 hasIssue "7" @default.
- W4377079797 hasLocation W43770797971 @default.
- W4377079797 hasOpenAccess W4377079797 @default.
- W4377079797 hasPrimaryLocation W43770797971 @default.
- W4377079797 hasRelatedWork W1976511355 @default.
- W4377079797 hasRelatedWork W1994872068 @default.
- W4377079797 hasRelatedWork W2162261253 @default.
- W4377079797 hasRelatedWork W2469073606 @default.
- W4377079797 hasRelatedWork W2546886435 @default.
- W4377079797 hasRelatedWork W2587236994 @default.