Matches in SemOpenAlex for { <https://semopenalex.org/work/W4377080167> ?p ?o ?g. }
Showing items 1 to 69 of
69
with 100 items per page.
- W4377080167 endingPage "140202" @default.
- W4377080167 startingPage "140202" @default.
- W4377080167 abstract "Machine learning algorithms can learn the rules and patterns of big data through computers, excavate potential information hidden behind the data, and be widely used to solve classification, regression, clustering, and other problems. Firstly, this paper uses CORSIKA software to simulate the process of cosmic ray cascade shower in the atmosphere, generating information such as the initial energy, zenith angle, azimuth angle of cosmic ray particles. Then, this paper uses the Geant4 toolkit to conduct thermal neutron detector response simulation, generating 4000 particles in each of proton, helium, CNO, MgAlSi and iron. Based on the experimental simulation data of thermal neutron detector, this paper constructs machine learning models for identifying cosmic ray particles by using decision tree (DT), random forest (RF) and BP neural network (BP NN) respectively. For each particle, all the machine learning algorithms are used for model training based on the simulation data. The cross grid search method is used to adjust the hyper parameters of each machine learning algorithm. The AUC value and <i>Q</i> quality factor value of each algorithm are used as evaluation indexes for particle composition identification. The AUC value is a general indicator for evaluating algorithm performance in machine learning and the <i>Q</i> quality factor value is an evaluation index commonly used in the field of high energy physics. The Experimental results show that different machine learning models have great influence on particle prediction accuracy, and the random forest cosmic ray particle identification model has sufficient accuracy and generalization capability. In the test, the decision tree algorithm adjusted by cross grid search method is sensitive to the medium components (CNO and MgAlSi). The AUC values of the algorithm are all above 0.95 and the <i>Q</i> quality factor values are all above 6. The random forest algorithm adjusted by the cross grid search method has the best effect on the identification of cosmic ray particles. The AUC values of the algorithm are all more than 0.92 and the <i>Q</i> quality factor values are all more than 4. The BP neural network algorithm is only sensitive to proton and iron. This study provides a new method and selection for identifying and screening the cosmic ray particles and it also provides a new idea for the following measurement of cosmic ray energy spectrum by thermal neutron detector." @default.
- W4377080167 created "2023-05-20" @default.
- W4377080167 creator A5009810421 @default.
- W4377080167 creator A5018742393 @default.
- W4377080167 creator A5054551406 @default.
- W4377080167 creator A5066813293 @default.
- W4377080167 creator A5075605972 @default.
- W4377080167 date "2023-01-01" @default.
- W4377080167 modified "2023-10-16" @default.
- W4377080167 title "Application of machine learning in cosmic ray particle identification" @default.
- W4377080167 cites W2782719466 @default.
- W4377080167 cites W2811344039 @default.
- W4377080167 cites W2910111131 @default.
- W4377080167 cites W2965136565 @default.
- W4377080167 cites W2986797245 @default.
- W4377080167 cites W2992876941 @default.
- W4377080167 cites W3083094880 @default.
- W4377080167 cites W3117944633 @default.
- W4377080167 cites W4214664709 @default.
- W4377080167 cites W4226218566 @default.
- W4377080167 cites W4253683072 @default.
- W4377080167 cites W4297923127 @default.
- W4377080167 doi "https://doi.org/10.7498/aps.72.20230334" @default.
- W4377080167 hasPublicationYear "2023" @default.
- W4377080167 type Work @default.
- W4377080167 citedByCount "0" @default.
- W4377080167 crossrefType "journal-article" @default.
- W4377080167 hasAuthorship W4377080167A5009810421 @default.
- W4377080167 hasAuthorship W4377080167A5018742393 @default.
- W4377080167 hasAuthorship W4377080167A5054551406 @default.
- W4377080167 hasAuthorship W4377080167A5066813293 @default.
- W4377080167 hasAuthorship W4377080167A5075605972 @default.
- W4377080167 hasBestOaLocation W43770801671 @default.
- W4377080167 hasConcept C111309251 @default.
- W4377080167 hasConcept C11413529 @default.
- W4377080167 hasConcept C119857082 @default.
- W4377080167 hasConcept C121332964 @default.
- W4377080167 hasConcept C154945302 @default.
- W4377080167 hasConcept C185544564 @default.
- W4377080167 hasConcept C41008148 @default.
- W4377080167 hasConcept C50644808 @default.
- W4377080167 hasConceptScore W4377080167C111309251 @default.
- W4377080167 hasConceptScore W4377080167C11413529 @default.
- W4377080167 hasConceptScore W4377080167C119857082 @default.
- W4377080167 hasConceptScore W4377080167C121332964 @default.
- W4377080167 hasConceptScore W4377080167C154945302 @default.
- W4377080167 hasConceptScore W4377080167C185544564 @default.
- W4377080167 hasConceptScore W4377080167C41008148 @default.
- W4377080167 hasConceptScore W4377080167C50644808 @default.
- W4377080167 hasIssue "14" @default.
- W4377080167 hasLocation W43770801671 @default.
- W4377080167 hasOpenAccess W4377080167 @default.
- W4377080167 hasPrimaryLocation W43770801671 @default.
- W4377080167 hasRelatedWork W1974377903 @default.
- W4377080167 hasRelatedWork W1984063547 @default.
- W4377080167 hasRelatedWork W2006885722 @default.
- W4377080167 hasRelatedWork W2041800710 @default.
- W4377080167 hasRelatedWork W2045521873 @default.
- W4377080167 hasRelatedWork W2228476279 @default.
- W4377080167 hasRelatedWork W2961085424 @default.
- W4377080167 hasRelatedWork W3100231366 @default.
- W4377080167 hasRelatedWork W3100540710 @default.
- W4377080167 hasRelatedWork W3125459410 @default.
- W4377080167 hasVolume "72" @default.
- W4377080167 isParatext "false" @default.
- W4377080167 isRetracted "false" @default.
- W4377080167 workType "article" @default.