Matches in SemOpenAlex for { <https://semopenalex.org/work/W4377091737> ?p ?o ?g. }
- W4377091737 endingPage "110630" @default.
- W4377091737 startingPage "110630" @default.
- W4377091737 abstract "Bayesian evolutionary optimization algorithms have been widely employed to solve expensive many-objective optimization problems. However, the existing approaches are generally designed for low-dimensional problems. In high-dimensional problems, the accuracy of the prediction decreases. And the acquisition function becomes ineffective. The combination of these challenges renders existing approaches unsuitable for selecting potential individual solutions for high-dimensional many-objective optimization problems. To address these limitations, we propose a novel Entropy Search-based Bayesian Co-Evolutionary Optimization approach (ESB-CEO). With the co-evolutionary algorithm as the basic optimizer, it executes an adaptive acquisition function combining the Lp-norm and information entropy to efficiently solve computationally expensive many-objective optimization problems. Individual solutions that have a significant effect on different search stages can be effectively identified, which improves the convergence and diversity of the algorithm. Extensive experimental results based on a set of expensive multi/many-objective test problems demonstrate that the proposed approach significantly outperforms five state-of-the-art surrogate-assisted evolutionary algorithms." @default.
- W4377091737 created "2023-05-20" @default.
- W4377091737 creator A5003331350 @default.
- W4377091737 creator A5023400863 @default.
- W4377091737 creator A5064069283 @default.
- W4377091737 creator A5086722529 @default.
- W4377091737 date "2023-08-01" @default.
- W4377091737 modified "2023-09-25" @default.
- W4377091737 title "Bayesian Co-evolutionary Optimization based entropy search for high-dimensional many-objective optimization" @default.
- W4377091737 cites W1493761729 @default.
- W4377091737 cites W1510052597 @default.
- W4377091737 cites W1573878755 @default.
- W4377091737 cites W1984845482 @default.
- W4377091737 cites W1992688650 @default.
- W4377091737 cites W2003500362 @default.
- W4377091737 cites W2005865517 @default.
- W4377091737 cites W2011174137 @default.
- W4377091737 cites W2014851363 @default.
- W4377091737 cites W2018300124 @default.
- W4377091737 cites W2020009149 @default.
- W4377091737 cites W2029959045 @default.
- W4377091737 cites W2082228576 @default.
- W4377091737 cites W2088368893 @default.
- W4377091737 cites W2093966662 @default.
- W4377091737 cites W2105245738 @default.
- W4377091737 cites W2111526171 @default.
- W4377091737 cites W2112912151 @default.
- W4377091737 cites W2115167570 @default.
- W4377091737 cites W2126105956 @default.
- W4377091737 cites W2143381319 @default.
- W4377091737 cites W2149416133 @default.
- W4377091737 cites W2151238122 @default.
- W4377091737 cites W2154693991 @default.
- W4377091737 cites W2155067194 @default.
- W4377091737 cites W2156194072 @default.
- W4377091737 cites W2158247472 @default.
- W4377091737 cites W2166348281 @default.
- W4377091737 cites W2343601797 @default.
- W4377091737 cites W2404080558 @default.
- W4377091737 cites W2546299924 @default.
- W4377091737 cites W2561740238 @default.
- W4377091737 cites W2609215372 @default.
- W4377091737 cites W2729909848 @default.
- W4377091737 cites W2764251381 @default.
- W4377091737 cites W2785722638 @default.
- W4377091737 cites W2785988364 @default.
- W4377091737 cites W2800142695 @default.
- W4377091737 cites W2885582368 @default.
- W4377091737 cites W2891140334 @default.
- W4377091737 cites W2891186800 @default.
- W4377091737 cites W2921569056 @default.
- W4377091737 cites W2985063291 @default.
- W4377091737 cites W3004157659 @default.
- W4377091737 cites W3086733735 @default.
- W4377091737 cites W3102518921 @default.
- W4377091737 cites W3103322397 @default.
- W4377091737 cites W3105759934 @default.
- W4377091737 cites W3113095334 @default.
- W4377091737 cites W3136310514 @default.
- W4377091737 cites W3153328918 @default.
- W4377091737 cites W3153447034 @default.
- W4377091737 cites W3154353929 @default.
- W4377091737 cites W3162105028 @default.
- W4377091737 cites W3186772170 @default.
- W4377091737 cites W3187022876 @default.
- W4377091737 cites W3190456726 @default.
- W4377091737 cites W4200242031 @default.
- W4377091737 cites W4206210859 @default.
- W4377091737 cites W4212987791 @default.
- W4377091737 doi "https://doi.org/10.1016/j.knosys.2023.110630" @default.
- W4377091737 hasPublicationYear "2023" @default.
- W4377091737 type Work @default.
- W4377091737 citedByCount "0" @default.
- W4377091737 crossrefType "journal-article" @default.
- W4377091737 hasAuthorship W4377091737A5003331350 @default.
- W4377091737 hasAuthorship W4377091737A5023400863 @default.
- W4377091737 hasAuthorship W4377091737A5064069283 @default.
- W4377091737 hasAuthorship W4377091737A5086722529 @default.
- W4377091737 hasConcept C106301342 @default.
- W4377091737 hasConcept C107673813 @default.
- W4377091737 hasConcept C11413529 @default.
- W4377091737 hasConcept C119857082 @default.
- W4377091737 hasConcept C121332964 @default.
- W4377091737 hasConcept C122357587 @default.
- W4377091737 hasConcept C126255220 @default.
- W4377091737 hasConcept C137836250 @default.
- W4377091737 hasConcept C150185637 @default.
- W4377091737 hasConcept C154945302 @default.
- W4377091737 hasConcept C159149176 @default.
- W4377091737 hasConcept C2778049539 @default.
- W4377091737 hasConcept C33923547 @default.
- W4377091737 hasConcept C41008148 @default.
- W4377091737 hasConcept C62520636 @default.
- W4377091737 hasConcept C68781425 @default.
- W4377091737 hasConceptScore W4377091737C106301342 @default.
- W4377091737 hasConceptScore W4377091737C107673813 @default.
- W4377091737 hasConceptScore W4377091737C11413529 @default.
- W4377091737 hasConceptScore W4377091737C119857082 @default.