Matches in SemOpenAlex for { <https://semopenalex.org/work/W4377092022> ?p ?o ?g. }
Showing items 1 to 94 of
94
with 100 items per page.
- W4377092022 abstract "Abstract Single-cell sequencing is an emerging sequencing technology that can effectively identify the cell types of tumors. In bladder cancer prognosis, muscular invasion often represents a poor prognosis and affects patients' quality of life. This study aims to extract the expression levels of muscle-invasive related genes(MIRGs) in bladder cancer patients and construct a model of MIRG, which can predict bladder cancer patients' prognosis using bioinformatics methods. Methods: Single-cell sequencing data of bladder cancer patients were obtained from the GEO database. After conducting quality control and cell type identification, all epithelial cells in the samples were extracted and classified based on their invasive and non-invasive characteristics, followed by a differential analysis. The results were identified as MIRGs. Subsequently, we downloaded and organized gene data of bladder cancer patients from TCGA and determined the intersection of MIRGs and the sequenced gene set of TCGA patients. Clinical information was then associated with the intersection, and the data were divided into training and test sets, with the training set used for model construction and the test set for model verification. Subsequently, the Least Absolute Shrinkage and Selection Operator (LASSO) algorithm and Cox regression were used to construct a prognostic model based on MIRGs. Based on the prognostic features, risk scores were calculated, and patients were classified into high-risk and low-risk groups. We observed the survival information of patients in the high-risk and low-risk groups in both the training and test sets, constructed ROC curves to assess the predictive ability of the model, and subsequently, we generated nomograms. Results: Three cell types were identified, and epithelial cells were extracted, clustered, and divided into invasive and non-invasive groups based on pathological staging. A total of 411 differentially expressed genes were screened. GO and KEGG analyses revealed that these genes were significantly associated with cellular processes such as apoptosis, cell adhesion, and tumor development and progression.After intersecting the expressed genes, 402 genes were determined for model construction. Following the LASSO algorithm and Cox regression, a risk prediction model consisting of CD74, AKR1B1, EIF3D, EMP1, CRABP2, TRIM31, RPL36A and MRPS6 was established.Survival curves and Receiver Operating Characteristic (ROC) curves demonstrated that the model exhibited good predictive ability. A nomograms was constructed to predict patients' survival rates at 1, 3, and 5 years. The calibration curve of the nomograms indicated that it had a satisfactory prognostic ability for patients. Conclusion: In this study, based on single-cell sequencing data, TCGA sequencing data and clinical information, the bladder cancer muscle-invasive related gene prognostic model constructed using multi-omics methods demonstrated a certain degree of accuracy and reliability in predicting the survival prognosis of bladder cancer patients. This provides a reference for assessing the prognosis of bladder cancer patients." @default.
- W4377092022 created "2023-05-20" @default.
- W4377092022 creator A5018328047 @default.
- W4377092022 creator A5019428387 @default.
- W4377092022 creator A5039956880 @default.
- W4377092022 creator A5070628412 @default.
- W4377092022 creator A5086529957 @default.
- W4377092022 creator A5091979833 @default.
- W4377092022 date "2023-05-19" @default.
- W4377092022 modified "2023-10-17" @default.
- W4377092022 title "Identification of muscle-invasive related genes in bladder cancer single-cell sequencing data for constructing patient prognostic model" @default.
- W4377092022 cites W1562562021 @default.
- W4377092022 cites W2623123562 @default.
- W4377092022 cites W2765793516 @default.
- W4377092022 cites W2886347923 @default.
- W4377092022 cites W2907514116 @default.
- W4377092022 cites W2945968067 @default.
- W4377092022 cites W2960029024 @default.
- W4377092022 cites W2967136113 @default.
- W4377092022 cites W2985611265 @default.
- W4377092022 cites W2989977128 @default.
- W4377092022 cites W2993362888 @default.
- W4377092022 cites W3010149472 @default.
- W4377092022 cites W3023288864 @default.
- W4377092022 cites W3039338730 @default.
- W4377092022 cites W3089783249 @default.
- W4377092022 cites W3136721362 @default.
- W4377092022 cites W3159369829 @default.
- W4377092022 cites W3159454489 @default.
- W4377092022 cites W3162225505 @default.
- W4377092022 cites W3169274538 @default.
- W4377092022 cites W3186260304 @default.
- W4377092022 cites W3198719997 @default.
- W4377092022 cites W3202817223 @default.
- W4377092022 cites W3206043227 @default.
- W4377092022 cites W3207006828 @default.
- W4377092022 cites W3209393335 @default.
- W4377092022 cites W4210600128 @default.
- W4377092022 cites W4224228595 @default.
- W4377092022 cites W4226271841 @default.
- W4377092022 cites W4283332075 @default.
- W4377092022 cites W4296875615 @default.
- W4377092022 cites W4308620623 @default.
- W4377092022 cites W4363651883 @default.
- W4377092022 doi "https://doi.org/10.21203/rs.3.rs-2920456/v1" @default.
- W4377092022 hasPublicationYear "2023" @default.
- W4377092022 type Work @default.
- W4377092022 citedByCount "0" @default.
- W4377092022 crossrefType "posted-content" @default.
- W4377092022 hasAuthorship W4377092022A5018328047 @default.
- W4377092022 hasAuthorship W4377092022A5019428387 @default.
- W4377092022 hasAuthorship W4377092022A5039956880 @default.
- W4377092022 hasAuthorship W4377092022A5070628412 @default.
- W4377092022 hasAuthorship W4377092022A5086529957 @default.
- W4377092022 hasAuthorship W4377092022A5091979833 @default.
- W4377092022 hasBestOaLocation W43770920221 @default.
- W4377092022 hasConcept C121608353 @default.
- W4377092022 hasConcept C126322002 @default.
- W4377092022 hasConcept C136764020 @default.
- W4377092022 hasConcept C143998085 @default.
- W4377092022 hasConcept C2780352672 @default.
- W4377092022 hasConcept C37616216 @default.
- W4377092022 hasConcept C41008148 @default.
- W4377092022 hasConcept C50382708 @default.
- W4377092022 hasConcept C70721500 @default.
- W4377092022 hasConcept C71924100 @default.
- W4377092022 hasConcept C86803240 @default.
- W4377092022 hasConceptScore W4377092022C121608353 @default.
- W4377092022 hasConceptScore W4377092022C126322002 @default.
- W4377092022 hasConceptScore W4377092022C136764020 @default.
- W4377092022 hasConceptScore W4377092022C143998085 @default.
- W4377092022 hasConceptScore W4377092022C2780352672 @default.
- W4377092022 hasConceptScore W4377092022C37616216 @default.
- W4377092022 hasConceptScore W4377092022C41008148 @default.
- W4377092022 hasConceptScore W4377092022C50382708 @default.
- W4377092022 hasConceptScore W4377092022C70721500 @default.
- W4377092022 hasConceptScore W4377092022C71924100 @default.
- W4377092022 hasConceptScore W4377092022C86803240 @default.
- W4377092022 hasLocation W43770920221 @default.
- W4377092022 hasOpenAccess W4377092022 @default.
- W4377092022 hasPrimaryLocation W43770920221 @default.
- W4377092022 hasRelatedWork W1411054225 @default.
- W4377092022 hasRelatedWork W2596040508 @default.
- W4377092022 hasRelatedWork W2600378528 @default.
- W4377092022 hasRelatedWork W2919897224 @default.
- W4377092022 hasRelatedWork W3015841356 @default.
- W4377092022 hasRelatedWork W3155235623 @default.
- W4377092022 hasRelatedWork W3158480947 @default.
- W4377092022 hasRelatedWork W3179056284 @default.
- W4377092022 hasRelatedWork W4210694159 @default.
- W4377092022 hasRelatedWork W4281635035 @default.
- W4377092022 isParatext "false" @default.
- W4377092022 isRetracted "false" @default.
- W4377092022 workType "article" @default.