Matches in SemOpenAlex for { <https://semopenalex.org/work/W4377095910> ?p ?o ?g. }
Showing items 1 to 89 of
89
with 100 items per page.
- W4377095910 endingPage "e000531" @default.
- W4377095910 startingPage "e000531" @default.
- W4377095910 abstract "Background Preoperative imaging assessment of surgical risk is very important for the prognosis of these children. To develop and validate a radiomics-based machine learning model based on the analysis of radiomics features to predict surgical risk in children with abdominal neuroblastoma (NB). Methods A retrospective study was conducted from April 2019 to March 2021 among 74 children with abdominal NB. A total of 1874 radiomic features in MR images were extracted from each patient. Support vector machines (SVMs) were used to establish the model. Eighty percent of the data were used as the training set to optimize the model, and 20% of the data were used to validate its accuracy, sensitivity, specificity and area under the curve (AUC) to verify its effectiveness. Results Among the 74 children with abdominal NB, 55 (65%) had surgical risk and 19 (35%) had no surgical risk. A t test and Lasso identified that 28 radiomic features were associated with surgical risk. After developing an SVM-based model using these features, predictions were made about whether children with abdominal NB had surgical risk. The model achieved an AUC of 0.94 (a sensitivity of 0.83 and a specificity of 0.80) with 0.890 accuracy in the training set and an AUC of 0.81 (a sensitivity of 0.73 and a specificity of 0.82) with 0.838 accuracy in the test set. Conclusions Radiomics and machine learning can be used to predict the surgical risk in children with abdominal NB. The model based on 28 radiomic features established by SVM showed good diagnostic efficiency." @default.
- W4377095910 created "2023-05-20" @default.
- W4377095910 creator A5004005455 @default.
- W4377095910 creator A5034421078 @default.
- W4377095910 creator A5078572492 @default.
- W4377095910 creator A5082123402 @default.
- W4377095910 creator A5090446741 @default.
- W4377095910 date "2023-05-01" @default.
- W4377095910 modified "2023-10-14" @default.
- W4377095910 title "Radiomic-based machine learning model for predicting the surgical risk in children with abdominal neuroblastoma" @default.
- W4377095910 cites W1408981388 @default.
- W4377095910 cites W1895964705 @default.
- W4377095910 cites W1931650569 @default.
- W4377095910 cites W1941209368 @default.
- W4377095910 cites W2114721712 @default.
- W4377095910 cites W2117340355 @default.
- W4377095910 cites W2128739912 @default.
- W4377095910 cites W2166219471 @default.
- W4377095910 cites W2174661749 @default.
- W4377095910 cites W2275881867 @default.
- W4377095910 cites W2478727422 @default.
- W4377095910 cites W2517804208 @default.
- W4377095910 cites W2550338445 @default.
- W4377095910 cites W2617103357 @default.
- W4377095910 cites W2767128594 @default.
- W4377095910 cites W2885668908 @default.
- W4377095910 cites W2923501617 @default.
- W4377095910 cites W3009444585 @default.
- W4377095910 cites W3015495757 @default.
- W4377095910 doi "https://doi.org/10.1136/wjps-2022-000531" @default.
- W4377095910 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/37223779" @default.
- W4377095910 hasPublicationYear "2023" @default.
- W4377095910 type Work @default.
- W4377095910 citedByCount "0" @default.
- W4377095910 crossrefType "journal-article" @default.
- W4377095910 hasAuthorship W4377095910A5004005455 @default.
- W4377095910 hasAuthorship W4377095910A5034421078 @default.
- W4377095910 hasAuthorship W4377095910A5078572492 @default.
- W4377095910 hasAuthorship W4377095910A5082123402 @default.
- W4377095910 hasAuthorship W4377095910A5090446741 @default.
- W4377095910 hasBestOaLocation W43770959101 @default.
- W4377095910 hasConcept C119857082 @default.
- W4377095910 hasConcept C12174686 @default.
- W4377095910 hasConcept C12267149 @default.
- W4377095910 hasConcept C126838900 @default.
- W4377095910 hasConcept C136764020 @default.
- W4377095910 hasConcept C141071460 @default.
- W4377095910 hasConcept C154945302 @default.
- W4377095910 hasConcept C167135981 @default.
- W4377095910 hasConcept C2778559731 @default.
- W4377095910 hasConcept C37616216 @default.
- W4377095910 hasConcept C38652104 @default.
- W4377095910 hasConcept C41008148 @default.
- W4377095910 hasConcept C71924100 @default.
- W4377095910 hasConceptScore W4377095910C119857082 @default.
- W4377095910 hasConceptScore W4377095910C12174686 @default.
- W4377095910 hasConceptScore W4377095910C12267149 @default.
- W4377095910 hasConceptScore W4377095910C126838900 @default.
- W4377095910 hasConceptScore W4377095910C136764020 @default.
- W4377095910 hasConceptScore W4377095910C141071460 @default.
- W4377095910 hasConceptScore W4377095910C154945302 @default.
- W4377095910 hasConceptScore W4377095910C167135981 @default.
- W4377095910 hasConceptScore W4377095910C2778559731 @default.
- W4377095910 hasConceptScore W4377095910C37616216 @default.
- W4377095910 hasConceptScore W4377095910C38652104 @default.
- W4377095910 hasConceptScore W4377095910C41008148 @default.
- W4377095910 hasConceptScore W4377095910C71924100 @default.
- W4377095910 hasIssue "3" @default.
- W4377095910 hasLocation W43770959101 @default.
- W4377095910 hasLocation W43770959102 @default.
- W4377095910 hasLocation W43770959103 @default.
- W4377095910 hasOpenAccess W4377095910 @default.
- W4377095910 hasPrimaryLocation W43770959101 @default.
- W4377095910 hasRelatedWork W1996541855 @default.
- W4377095910 hasRelatedWork W2948635447 @default.
- W4377095910 hasRelatedWork W3129804828 @default.
- W4377095910 hasRelatedWork W3164282121 @default.
- W4377095910 hasRelatedWork W3174196512 @default.
- W4377095910 hasRelatedWork W3195168932 @default.
- W4377095910 hasRelatedWork W4224059758 @default.
- W4377095910 hasRelatedWork W4283697347 @default.
- W4377095910 hasRelatedWork W4298144215 @default.
- W4377095910 hasRelatedWork W4318350883 @default.
- W4377095910 hasVolume "6" @default.
- W4377095910 isParatext "false" @default.
- W4377095910 isRetracted "false" @default.
- W4377095910 workType "article" @default.