Matches in SemOpenAlex for { <https://semopenalex.org/work/W4377100320> ?p ?o ?g. }
- W4377100320 endingPage "706" @default.
- W4377100320 startingPage "689" @default.
- W4377100320 abstract "Water distribution networks (WDNs) face serious management challenges due to the high investment necessity for pipe maintenance and high performance as well as the uncertainties of input variables. To address these challenges, this study aims to prepare and implement the optimal instructions for pipe replacement with maximum hydraulic performance, minimum cost, and minimum uncertainty. Herein, a robust clustering multi-objective (RCMO) approach is developed by combining five models, including hydraulic simulation, multi-objective optimization, pipe failure rate prediction, non-linear interval programming, and multi-criteria decision-making. In this procedure, a clustering method is implemented to reduce the uncertain scenarios of the multi-objective optimization. The new approach is applied to a WDN in Gorgan, Iran. Implementing the optimal instruction increases the network’s physical and hydraulic performance by 56% and 35%, respectively, and decreases the annual deficit of nodes’ demand between 69% and 93%. Also, the proposed methodology reduces the optimization run time by about 99%." @default.
- W4377100320 created "2023-05-20" @default.
- W4377100320 creator A5011600518 @default.
- W4377100320 creator A5016579329 @default.
- W4377100320 creator A5017966376 @default.
- W4377100320 creator A5039341855 @default.
- W4377100320 creator A5052558681 @default.
- W4377100320 creator A5075689821 @default.
- W4377100320 date "2023-05-19" @default.
- W4377100320 modified "2023-09-25" @default.
- W4377100320 title "A robust clustering-based multi-objective model for optimal instruction of pipes replacement in urban WDN based on machine learning approaches" @default.
- W4377100320 cites W1266652549 @default.
- W4377100320 cites W1905016509 @default.
- W4377100320 cites W1911167541 @default.
- W4377100320 cites W1955375869 @default.
- W4377100320 cites W1965008374 @default.
- W4377100320 cites W1969869460 @default.
- W4377100320 cites W1970585012 @default.
- W4377100320 cites W1971735090 @default.
- W4377100320 cites W1973099123 @default.
- W4377100320 cites W1976924745 @default.
- W4377100320 cites W1978689898 @default.
- W4377100320 cites W1979310747 @default.
- W4377100320 cites W1998403264 @default.
- W4377100320 cites W2003644018 @default.
- W4377100320 cites W2009054772 @default.
- W4377100320 cites W2013782263 @default.
- W4377100320 cites W2022485595 @default.
- W4377100320 cites W2023741292 @default.
- W4377100320 cites W2026298807 @default.
- W4377100320 cites W2027197837 @default.
- W4377100320 cites W2030749048 @default.
- W4377100320 cites W2040664983 @default.
- W4377100320 cites W2048414251 @default.
- W4377100320 cites W2050446975 @default.
- W4377100320 cites W2051734810 @default.
- W4377100320 cites W2055133935 @default.
- W4377100320 cites W2061641323 @default.
- W4377100320 cites W2064612889 @default.
- W4377100320 cites W2073172192 @default.
- W4377100320 cites W2075262652 @default.
- W4377100320 cites W2080314345 @default.
- W4377100320 cites W2089427117 @default.
- W4377100320 cites W2092183847 @default.
- W4377100320 cites W2095755388 @default.
- W4377100320 cites W2101950038 @default.
- W4377100320 cites W2131719521 @default.
- W4377100320 cites W2137133038 @default.
- W4377100320 cites W2137983211 @default.
- W4377100320 cites W2207649084 @default.
- W4377100320 cites W2297878978 @default.
- W4377100320 cites W2337255811 @default.
- W4377100320 cites W2441126733 @default.
- W4377100320 cites W2463641400 @default.
- W4377100320 cites W2547640157 @default.
- W4377100320 cites W2560427185 @default.
- W4377100320 cites W2587941135 @default.
- W4377100320 cites W2605200991 @default.
- W4377100320 cites W2607097720 @default.
- W4377100320 cites W2607360056 @default.
- W4377100320 cites W2609618454 @default.
- W4377100320 cites W2613822930 @default.
- W4377100320 cites W2737229512 @default.
- W4377100320 cites W2743685964 @default.
- W4377100320 cites W2761293071 @default.
- W4377100320 cites W2805080286 @default.
- W4377100320 cites W2895413668 @default.
- W4377100320 cites W2907673188 @default.
- W4377100320 cites W2916419633 @default.
- W4377100320 cites W2968478416 @default.
- W4377100320 cites W2969787400 @default.
- W4377100320 cites W2979071650 @default.
- W4377100320 cites W2987225788 @default.
- W4377100320 cites W3015877177 @default.
- W4377100320 cites W3036016861 @default.
- W4377100320 cites W3097171622 @default.
- W4377100320 cites W3098536052 @default.
- W4377100320 cites W3105444733 @default.
- W4377100320 cites W3107496138 @default.
- W4377100320 cites W3129799527 @default.
- W4377100320 cites W3134646679 @default.
- W4377100320 cites W3211509139 @default.
- W4377100320 cites W38708963 @default.
- W4377100320 cites W4200587203 @default.
- W4377100320 cites W4224287659 @default.
- W4377100320 cites W4229067210 @default.
- W4377100320 cites W4231712686 @default.
- W4377100320 doi "https://doi.org/10.1080/1573062x.2023.2209063" @default.
- W4377100320 hasPublicationYear "2023" @default.
- W4377100320 type Work @default.
- W4377100320 citedByCount "0" @default.
- W4377100320 crossrefType "journal-article" @default.
- W4377100320 hasAuthorship W4377100320A5011600518 @default.
- W4377100320 hasAuthorship W4377100320A5016579329 @default.
- W4377100320 hasAuthorship W4377100320A5017966376 @default.
- W4377100320 hasAuthorship W4377100320A5039341855 @default.
- W4377100320 hasAuthorship W4377100320A5052558681 @default.
- W4377100320 hasAuthorship W4377100320A5075689821 @default.