Matches in SemOpenAlex for { <https://semopenalex.org/work/W4377103499> ?p ?o ?g. }
- W4377103499 abstract "Sepsis-associated acute kidney injury (S-AKI) is a major contributor to mortality in intensive care units (ICU). Early prediction of mortality risk is crucial to enhance prognosis and optimize clinical decisions. This study aims to develop a 28-day mortality risk prediction model for S-AKI utilizing an explainable ensemble machine learning (ML) algorithm.This study utilized data from the Medical Information Mart for Intensive Care IV (MIMIC-IV 2.0) database to gather information on patients with S-AKI. Univariate regression, correlation analysis and Boruta were combined for feature selection. To construct the four ML models, hyperparameters were tuned via random search and five-fold cross-validation. To evaluate the performance of all models, ROC, K-S, and LIFT curves were used. The discrimination of ML models and traditional scoring systems was compared using area under the receiver operating characteristic curve (AUC). Additionally, the SHapley Additive exPlanation (SHAP) was utilized to interpret the ML model and identify essential variables. To investigate the relationship between the top nine continuous variables and the risk of 28-day mortality. COX regression-restricted cubic splines were utilized while controlling for age and comorbidities.The study analyzed data from 9,158 patients with S-AKI, dividing them into a 28-day mortality group of 1,940 and a survival group of 7,578. The results showed that XGBoost was the best performing model of the four ML models with AUC of 0.873. All models outperformed APS-III 0.713 and SAPS-II 0.681. The K-S and LIFT curves indicated XGBoost as the most effective predictor for 28-day mortality risk. The model's performance was evaluated using ROCpr curves, calibration curves, accuracy, precision, and F1 scores. SHAP force plots were utilized to interpret and visualize the personalized predictive power of the 28-day mortality risk model. Additionally, COX regression restricted cubic splines revealed an interesting non-linear relationship between the top nine variables and 28-day mortality.The use of ensemble ML models has shown to be more effective than the LR model and conventional scoring systems in predicting 28-day mortality risk in S-AKI patients. By visualizing the XGBoost model with the best predictive performance, clinicians are able to identify high-risk patients early on and improve prognosis." @default.
- W4377103499 created "2023-05-20" @default.
- W4377103499 creator A5000877648 @default.
- W4377103499 creator A5027445238 @default.
- W4377103499 creator A5033976028 @default.
- W4377103499 creator A5066846436 @default.
- W4377103499 creator A5082356798 @default.
- W4377103499 date "2023-05-18" @default.
- W4377103499 modified "2023-09-27" @default.
- W4377103499 title "Explainable ensemble machine learning model for prediction of 28-day mortality risk in patients with sepsis-associated acute kidney injury" @default.
- W4377103499 cites W2102132939 @default.
- W4377103499 cites W2134568923 @default.
- W4377103499 cites W2143713767 @default.
- W4377103499 cites W2280404143 @default.
- W4377103499 cites W2297019965 @default.
- W4377103499 cites W2601746058 @default.
- W4377103499 cites W2766438525 @default.
- W4377103499 cites W2950811882 @default.
- W4377103499 cites W2978450093 @default.
- W4377103499 cites W3008227503 @default.
- W4377103499 cites W3026865292 @default.
- W4377103499 cites W3027697603 @default.
- W4377103499 cites W3111698685 @default.
- W4377103499 cites W3128201067 @default.
- W4377103499 cites W3129633046 @default.
- W4377103499 cites W3136946584 @default.
- W4377103499 cites W3187536395 @default.
- W4377103499 cites W3202964273 @default.
- W4377103499 cites W3216317617 @default.
- W4377103499 cites W4220713822 @default.
- W4377103499 cites W4220972808 @default.
- W4377103499 cites W4221135196 @default.
- W4377103499 cites W4225385582 @default.
- W4377103499 cites W4280556240 @default.
- W4377103499 cites W4282976375 @default.
- W4377103499 cites W4283009374 @default.
- W4377103499 cites W4294243383 @default.
- W4377103499 cites W4296111641 @default.
- W4377103499 cites W4315436374 @default.
- W4377103499 doi "https://doi.org/10.3389/fmed.2023.1165129" @default.
- W4377103499 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/37275353" @default.
- W4377103499 hasPublicationYear "2023" @default.
- W4377103499 type Work @default.
- W4377103499 citedByCount "0" @default.
- W4377103499 crossrefType "journal-article" @default.
- W4377103499 hasAuthorship W4377103499A5000877648 @default.
- W4377103499 hasAuthorship W4377103499A5027445238 @default.
- W4377103499 hasAuthorship W4377103499A5033976028 @default.
- W4377103499 hasAuthorship W4377103499A5066846436 @default.
- W4377103499 hasAuthorship W4377103499A5082356798 @default.
- W4377103499 hasBestOaLocation W43771034991 @default.
- W4377103499 hasConcept C119857082 @default.
- W4377103499 hasConcept C119898033 @default.
- W4377103499 hasConcept C126322002 @default.
- W4377103499 hasConcept C139002025 @default.
- W4377103499 hasConcept C148483581 @default.
- W4377103499 hasConcept C154945302 @default.
- W4377103499 hasConcept C161584116 @default.
- W4377103499 hasConcept C177713679 @default.
- W4377103499 hasConcept C194828623 @default.
- W4377103499 hasConcept C199163554 @default.
- W4377103499 hasConcept C2777671062 @default.
- W4377103499 hasConcept C2780472472 @default.
- W4377103499 hasConcept C2987404301 @default.
- W4377103499 hasConcept C41008148 @default.
- W4377103499 hasConcept C58471807 @default.
- W4377103499 hasConcept C71924100 @default.
- W4377103499 hasConcept C8642999 @default.
- W4377103499 hasConceptScore W4377103499C119857082 @default.
- W4377103499 hasConceptScore W4377103499C119898033 @default.
- W4377103499 hasConceptScore W4377103499C126322002 @default.
- W4377103499 hasConceptScore W4377103499C139002025 @default.
- W4377103499 hasConceptScore W4377103499C148483581 @default.
- W4377103499 hasConceptScore W4377103499C154945302 @default.
- W4377103499 hasConceptScore W4377103499C161584116 @default.
- W4377103499 hasConceptScore W4377103499C177713679 @default.
- W4377103499 hasConceptScore W4377103499C194828623 @default.
- W4377103499 hasConceptScore W4377103499C199163554 @default.
- W4377103499 hasConceptScore W4377103499C2777671062 @default.
- W4377103499 hasConceptScore W4377103499C2780472472 @default.
- W4377103499 hasConceptScore W4377103499C2987404301 @default.
- W4377103499 hasConceptScore W4377103499C41008148 @default.
- W4377103499 hasConceptScore W4377103499C58471807 @default.
- W4377103499 hasConceptScore W4377103499C71924100 @default.
- W4377103499 hasConceptScore W4377103499C8642999 @default.
- W4377103499 hasLocation W43771034991 @default.
- W4377103499 hasLocation W43771034992 @default.
- W4377103499 hasOpenAccess W4377103499 @default.
- W4377103499 hasPrimaryLocation W43771034991 @default.
- W4377103499 hasRelatedWork W2118578744 @default.
- W4377103499 hasRelatedWork W3125074861 @default.
- W4377103499 hasRelatedWork W3174196512 @default.
- W4377103499 hasRelatedWork W4210794429 @default.
- W4377103499 hasRelatedWork W4212852473 @default.
- W4377103499 hasRelatedWork W4223456145 @default.
- W4377103499 hasRelatedWork W4225360065 @default.
- W4377103499 hasRelatedWork W4280535922 @default.
- W4377103499 hasRelatedWork W4295309597 @default.
- W4377103499 hasRelatedWork W4309113015 @default.
- W4377103499 hasVolume "10" @default.