Matches in SemOpenAlex for { <https://semopenalex.org/work/W4377103896> ?p ?o ?g. }
- W4377103896 endingPage "2625" @default.
- W4377103896 startingPage "2625" @default.
- W4377103896 abstract "Aboveground biomass (AGB) mapping using spaceborne LiDAR data and multi-sensor images is essential for efficient carbon monitoring and climate change mitigation actions in heterogeneous forests. The optimal predictors of remote sensing-based AGB vary greatly with geographic stratification, such as topography and forest type, while the way in which geographic stratification influences the contributions of predictor variables in object-based AGB mapping is insufficiently studied. To address the improvement of mapping forest AGB by geographic stratification in heterogeneous forests, satellite multisensory data from global ecosystem dynamics investigation (GEDI) and series of advanced land observing satellite (ALOS) and Sentinel were integrated. Multi-sensor predictors for the AGB modeling of different types of forests were selected using a correlation analysis of variables calculated from topographically stratified objects. Random forests models were built with GEDI-based AGB and geographically stratified predictors to acquire wall-to-wall biomass values. It was illustrated that the mapped biomass had a similar distribution and was approximate to the sampled forest AGB. Through an accuracy comparison using independent validation samples, it was determined that the geographic stratification approach improved the accuracy by 34.79% compared to the unstratified process. Stratification of forest type further increased the mapped AGB accuracy compared to that of topography. Topographical stratification greatly influenced the predictors’ contributions to AGB mapping in mixed broadleaf–conifer and broad-leaved forests, but only slightly impacted coniferous forests. Optical variables were predominant for deciduous forests, while for evergreen forests, SAR indices outweighed the other predictors. As a pioneering estimation of forest AGB with geographic stratification using satellite multisensory data, this study offers optimal predictors and an advanced method for obtaining carbon maps in heterogeneous regional landscapes." @default.
- W4377103896 created "2023-05-20" @default.
- W4377103896 creator A5023199935 @default.
- W4377103896 creator A5064667798 @default.
- W4377103896 creator A5065836602 @default.
- W4377103896 creator A5073496971 @default.
- W4377103896 creator A5080189426 @default.
- W4377103896 creator A5083855889 @default.
- W4377103896 date "2023-05-18" @default.
- W4377103896 modified "2023-10-16" @default.
- W4377103896 title "Improved Object-Based Mapping of Aboveground Biomass Using Geographic Stratification with GEDI Data and Multi-Sensor Imagery" @default.
- W4377103896 cites W1565635109 @default.
- W4377103896 cites W1720665043 @default.
- W4377103896 cites W1989401377 @default.
- W4377103896 cites W2008374411 @default.
- W4377103896 cites W2012519352 @default.
- W4377103896 cites W2020520344 @default.
- W4377103896 cites W2047120335 @default.
- W4377103896 cites W2054581021 @default.
- W4377103896 cites W2118791227 @default.
- W4377103896 cites W2193261635 @default.
- W4377103896 cites W2556421733 @default.
- W4377103896 cites W2591466624 @default.
- W4377103896 cites W2765260274 @default.
- W4377103896 cites W2768035654 @default.
- W4377103896 cites W2772365113 @default.
- W4377103896 cites W2891644512 @default.
- W4377103896 cites W2905659887 @default.
- W4377103896 cites W2912041037 @default.
- W4377103896 cites W2912318923 @default.
- W4377103896 cites W2928790886 @default.
- W4377103896 cites W2951297504 @default.
- W4377103896 cites W2985495555 @default.
- W4377103896 cites W3009288410 @default.
- W4377103896 cites W3080224310 @default.
- W4377103896 cites W3111192536 @default.
- W4377103896 cites W3122223605 @default.
- W4377103896 cites W3132640023 @default.
- W4377103896 cites W3144125218 @default.
- W4377103896 cites W3179206166 @default.
- W4377103896 cites W3212204184 @default.
- W4377103896 cites W4205418362 @default.
- W4377103896 cites W4210544679 @default.
- W4377103896 cites W4225013432 @default.
- W4377103896 cites W4225758461 @default.
- W4377103896 cites W4282569215 @default.
- W4377103896 cites W4289080038 @default.
- W4377103896 cites W4292554566 @default.
- W4377103896 cites W4294018497 @default.
- W4377103896 cites W4297826792 @default.
- W4377103896 cites W4309422431 @default.
- W4377103896 cites W4310790983 @default.
- W4377103896 doi "https://doi.org/10.3390/rs15102625" @default.
- W4377103896 hasPublicationYear "2023" @default.
- W4377103896 type Work @default.
- W4377103896 citedByCount "0" @default.
- W4377103896 crossrefType "journal-article" @default.
- W4377103896 hasAuthorship W4377103896A5023199935 @default.
- W4377103896 hasAuthorship W4377103896A5064667798 @default.
- W4377103896 hasAuthorship W4377103896A5065836602 @default.
- W4377103896 hasAuthorship W4377103896A5073496971 @default.
- W4377103896 hasAuthorship W4377103896A5080189426 @default.
- W4377103896 hasAuthorship W4377103896A5083855889 @default.
- W4377103896 hasBestOaLocation W43771038961 @default.
- W4377103896 hasConcept C100701293 @default.
- W4377103896 hasConcept C100970517 @default.
- W4377103896 hasConcept C18903297 @default.
- W4377103896 hasConcept C192943249 @default.
- W4377103896 hasConcept C205649164 @default.
- W4377103896 hasConcept C33283694 @default.
- W4377103896 hasConcept C3527866 @default.
- W4377103896 hasConcept C39432304 @default.
- W4377103896 hasConcept C51399673 @default.
- W4377103896 hasConcept C59822182 @default.
- W4377103896 hasConcept C62649853 @default.
- W4377103896 hasConcept C86803240 @default.
- W4377103896 hasConcept C88548481 @default.
- W4377103896 hasConceptScore W4377103896C100701293 @default.
- W4377103896 hasConceptScore W4377103896C100970517 @default.
- W4377103896 hasConceptScore W4377103896C18903297 @default.
- W4377103896 hasConceptScore W4377103896C192943249 @default.
- W4377103896 hasConceptScore W4377103896C205649164 @default.
- W4377103896 hasConceptScore W4377103896C33283694 @default.
- W4377103896 hasConceptScore W4377103896C3527866 @default.
- W4377103896 hasConceptScore W4377103896C39432304 @default.
- W4377103896 hasConceptScore W4377103896C51399673 @default.
- W4377103896 hasConceptScore W4377103896C59822182 @default.
- W4377103896 hasConceptScore W4377103896C62649853 @default.
- W4377103896 hasConceptScore W4377103896C86803240 @default.
- W4377103896 hasConceptScore W4377103896C88548481 @default.
- W4377103896 hasFunder F4320321001 @default.
- W4377103896 hasIssue "10" @default.
- W4377103896 hasLocation W43771038961 @default.
- W4377103896 hasOpenAccess W4377103896 @default.
- W4377103896 hasPrimaryLocation W43771038961 @default.
- W4377103896 hasRelatedWork W1976723446 @default.
- W4377103896 hasRelatedWork W2001618165 @default.
- W4377103896 hasRelatedWork W2020764705 @default.