Matches in SemOpenAlex for { <https://semopenalex.org/work/W4377104642> ?p ?o ?g. }
Showing items 1 to 97 of
97
with 100 items per page.
- W4377104642 endingPage "6138" @default.
- W4377104642 startingPage "6138" @default.
- W4377104642 abstract "A mortality prediction model can be a great tool to assist physicians in decision making in the intensive care unit (ICU) in order to ensure optimal allocation of ICU resources according to the patient’s health conditions. The entire world witnessed a severe ICU patient capacity crisis a few years ago during the COVID-19 pandemic. Various widely utilized machine learning (ML) models in this research field can provide poor performance due to a lack of proper feature selection. Despite the fact that nature-based algorithms in other sectors perform well for feature selection, no comparative study on the performance of nature-based algorithms in feature selection has been conducted in the ICU mortality prediction field. Therefore, in this research, a comparison of the performance of ML models with and without feature selection was performed. In addition, explainable artificial intelligence (AI) was used to examine the contribution of features to the decision-making process. Explainable AI focuses on establishing transparency and traceability for statistical black-box machine learning techniques. Explainable AI is essential in the medical industry to foster public confidence and trust in machine learning model predictions. Three nature-based algorithms, namely the flower pollination algorithm (FPA), particle swarm algorithm (PSO), and genetic algorithm (GA), were used in this study. For the classification job, the most widely used and diversified classifiers from the literature were used, including logistic regression (LR), decision tree (DT) classifier, the gradient boosting (GB) algorithm, and the random forest (RF) algorithm. The Medical Information Mart for Intensive Care III (MIMIC-III) dataset was used to collect data on heart failure patients. On the MIMIC-III dataset, it was discovered that feature selection significantly improved the performance of the described ML models. Without applying any feature selection process on the MIMIC-III heart failure patient dataset, the accuracy of the four mentioned ML models, namely LR, DT, RF, and GB was 69.9%, 82.5%, 90.6%, and 91.0%, respectively, whereas with feature selection in combination with the FPA, the accuracy increased to 71.6%, 84.8%, 92.8%, and 91.1%, respectively, for the same dataset. Again, the FPA showed the highest area under the receiver operating characteristic (AUROC) value of 83.0% with the RF algorithm among all other algorithms utilized in this study. Thus, it can be concluded that the use of feature selection with FPA has a profound impact on the outcome of ML models. Shapley additive explanation (SHAP) was used in this study to interpret the ML models. SHAP was used in this study because it offers mathematical assurances for the precision and consistency of explanations. It is trustworthy and suitable for both local and global explanations. It was found that the features that were selected by SHAP as most important were also most common with the features selected by the FPA. Therefore, we hope that this study will help physicians to predict ICU mortality for heart failure patients with a limited number of features and with high accuracy." @default.
- W4377104642 created "2023-05-20" @default.
- W4377104642 creator A5011972592 @default.
- W4377104642 creator A5027525633 @default.
- W4377104642 creator A5057247142 @default.
- W4377104642 creator A5084130125 @default.
- W4377104642 creator A5087950594 @default.
- W4377104642 date "2023-05-17" @default.
- W4377104642 modified "2023-10-17" @default.
- W4377104642 title "Explainable Mortality Prediction Model for Congestive Heart Failure with Nature-Based Feature Selection Method" @default.
- W4377104642 cites W1898928487 @default.
- W4377104642 cites W1967419181 @default.
- W4377104642 cites W2520418775 @default.
- W4377104642 cites W2609220535 @default.
- W4377104642 cites W2754667744 @default.
- W4377104642 cites W2892079407 @default.
- W4377104642 cites W2911583982 @default.
- W4377104642 cites W2914405142 @default.
- W4377104642 cites W2936437926 @default.
- W4377104642 cites W2938932803 @default.
- W4377104642 cites W2945163040 @default.
- W4377104642 cites W2953776014 @default.
- W4377104642 cites W2968723626 @default.
- W4377104642 cites W2978543358 @default.
- W4377104642 cites W2991225622 @default.
- W4377104642 cites W3001336443 @default.
- W4377104642 cites W3007689421 @default.
- W4377104642 cites W3007978664 @default.
- W4377104642 cites W3011812967 @default.
- W4377104642 cites W3015269186 @default.
- W4377104642 cites W3022584988 @default.
- W4377104642 cites W3035142875 @default.
- W4377104642 cites W3044427673 @default.
- W4377104642 cites W3044853528 @default.
- W4377104642 cites W3046496067 @default.
- W4377104642 cites W3066100685 @default.
- W4377104642 cites W3090266264 @default.
- W4377104642 cites W3097189258 @default.
- W4377104642 cites W3111439255 @default.
- W4377104642 cites W3116286104 @default.
- W4377104642 cites W3127682585 @default.
- W4377104642 cites W3162199380 @default.
- W4377104642 cites W3183580055 @default.
- W4377104642 cites W3184022450 @default.
- W4377104642 cites W3197782790 @default.
- W4377104642 cites W3200718449 @default.
- W4377104642 cites W4247943214 @default.
- W4377104642 cites W4293242440 @default.
- W4377104642 cites W4301003819 @default.
- W4377104642 cites W4308118698 @default.
- W4377104642 doi "https://doi.org/10.3390/app13106138" @default.
- W4377104642 hasPublicationYear "2023" @default.
- W4377104642 type Work @default.
- W4377104642 citedByCount "1" @default.
- W4377104642 crossrefType "journal-article" @default.
- W4377104642 hasAuthorship W4377104642A5011972592 @default.
- W4377104642 hasAuthorship W4377104642A5027525633 @default.
- W4377104642 hasAuthorship W4377104642A5057247142 @default.
- W4377104642 hasAuthorship W4377104642A5084130125 @default.
- W4377104642 hasAuthorship W4377104642A5087950594 @default.
- W4377104642 hasBestOaLocation W43771046421 @default.
- W4377104642 hasConcept C110332635 @default.
- W4377104642 hasConcept C119857082 @default.
- W4377104642 hasConcept C148483581 @default.
- W4377104642 hasConcept C154945302 @default.
- W4377104642 hasConcept C169258074 @default.
- W4377104642 hasConcept C41008148 @default.
- W4377104642 hasConcept C84525736 @default.
- W4377104642 hasConcept C85617194 @default.
- W4377104642 hasConceptScore W4377104642C110332635 @default.
- W4377104642 hasConceptScore W4377104642C119857082 @default.
- W4377104642 hasConceptScore W4377104642C148483581 @default.
- W4377104642 hasConceptScore W4377104642C154945302 @default.
- W4377104642 hasConceptScore W4377104642C169258074 @default.
- W4377104642 hasConceptScore W4377104642C41008148 @default.
- W4377104642 hasConceptScore W4377104642C84525736 @default.
- W4377104642 hasConceptScore W4377104642C85617194 @default.
- W4377104642 hasIssue "10" @default.
- W4377104642 hasLocation W43771046421 @default.
- W4377104642 hasOpenAccess W4377104642 @default.
- W4377104642 hasPrimaryLocation W43771046421 @default.
- W4377104642 hasRelatedWork W1517228774 @default.
- W4377104642 hasRelatedWork W2117019857 @default.
- W4377104642 hasRelatedWork W2389704471 @default.
- W4377104642 hasRelatedWork W2599264709 @default.
- W4377104642 hasRelatedWork W2767419625 @default.
- W4377104642 hasRelatedWork W4313289487 @default.
- W4377104642 hasRelatedWork W4317732970 @default.
- W4377104642 hasRelatedWork W4321636153 @default.
- W4377104642 hasRelatedWork W4323294312 @default.
- W4377104642 hasRelatedWork W4366990902 @default.
- W4377104642 hasVolume "13" @default.
- W4377104642 isParatext "false" @default.
- W4377104642 isRetracted "false" @default.
- W4377104642 workType "article" @default.