Matches in SemOpenAlex for { <https://semopenalex.org/work/W4377108319> ?p ?o ?g. }
- W4377108319 abstract "Functional connectivity (FC) of the brain changes in various brain disorders. Its complexity, however, makes it difficult to obtain a systematic understanding of these alterations, especially when they are found individually and through hypothesis-based methods. It would be easier if the variety of brain connectivity alterations is extracted through data-driven approaches and expressed as variation modules (subnetworks). In the present study, we modified a blind approach to determine inter-group brain variations at the network level and applied it specifically to schizophrenia (SZ) disorder. The analysis is based on the application of independent component analysis (ICA) over the subject's dimension of the FC matrices, obtained from resting-state functional magnetic resonance imaging (rs-fMRI). The dataset included 27 SZ people and 27 completely matched healthy controls (HC). This hypothesis-free approach led to the finding of three brain subnetworks significantly discriminating SZ from HC. The area associated with these subnetworks mostly covers regions in visual, ventral attention, and somatomotor areas, which are in line with previous studies. Moreover, from the graph perspective, significant differences were observed between SZ and HC for these subnetworks, while there was no significant difference when the same parameters (path length, network strength, global/local efficiency, and clustering coefficient) across the same limited data were calculated for the whole brain network. The increased sensitivity of those subnetworks to SZ-induced alterations of connectivity suggested whether an individual scoring method based on their connectivity values can be applied to classify subjects. A simple scoring classifier was then suggested based on two of these subnetworks and resulted in acceptable sensitivity and specificity with an area under the ROC curve of 77.5%. The third subnetwork was found to be a less specific building block (module) for describing SZ alterations. It projected a wider range of inter-individual variations and, therefore, had a lower chance to be considered as a SZ biomarker. These findings confirmed that investigating brain variations from a modular viewpoint can help to find subnetworks that are more sensitive to SZ-induced alterations. Altogether, our study results illustrated the developed method's ability to systematically find brain alterations caused by SZ disorder from a network perspective." @default.
- W4377108319 created "2023-05-20" @default.
- W4377108319 creator A5003757370 @default.
- W4377108319 creator A5039977180 @default.
- W4377108319 creator A5091982700 @default.
- W4377108319 date "2023-05-18" @default.
- W4377108319 modified "2023-09-25" @default.
- W4377108319 title "Brain subnetworks most sensitive to alterations of functional connectivity in Schizophrenia: a data-driven approach" @default.
- W4377108319 cites W1509285273 @default.
- W4377108319 cites W1607906062 @default.
- W4377108319 cites W186545228 @default.
- W4377108319 cites W1968294774 @default.
- W4377108319 cites W1973494814 @default.
- W4377108319 cites W1974764791 @default.
- W4377108319 cites W1976927254 @default.
- W4377108319 cites W1986589478 @default.
- W4377108319 cites W1987550700 @default.
- W4377108319 cites W1987710649 @default.
- W4377108319 cites W1994660986 @default.
- W4377108319 cites W1998774121 @default.
- W4377108319 cites W2000433175 @default.
- W4377108319 cites W2001009317 @default.
- W4377108319 cites W2006052322 @default.
- W4377108319 cites W2011099767 @default.
- W4377108319 cites W2016060295 @default.
- W4377108319 cites W2018937381 @default.
- W4377108319 cites W2020318870 @default.
- W4377108319 cites W2022674975 @default.
- W4377108319 cites W2023373267 @default.
- W4377108319 cites W2031797820 @default.
- W4377108319 cites W2041951497 @default.
- W4377108319 cites W2049770520 @default.
- W4377108319 cites W2054052249 @default.
- W4377108319 cites W2060464767 @default.
- W4377108319 cites W2064925364 @default.
- W4377108319 cites W2067456724 @default.
- W4377108319 cites W2071869259 @default.
- W4377108319 cites W2079450984 @default.
- W4377108319 cites W2099800999 @default.
- W4377108319 cites W2101135654 @default.
- W4377108319 cites W2108384452 @default.
- W4377108319 cites W2110065044 @default.
- W4377108319 cites W2112090702 @default.
- W4377108319 cites W2113754895 @default.
- W4377108319 cites W2115687188 @default.
- W4377108319 cites W2118706982 @default.
- W4377108319 cites W2122609459 @default.
- W4377108319 cites W2128588517 @default.
- W4377108319 cites W2130419668 @default.
- W4377108319 cites W2137813980 @default.
- W4377108319 cites W2140536737 @default.
- W4377108319 cites W2149968633 @default.
- W4377108319 cites W2150174494 @default.
- W4377108319 cites W2156014011 @default.
- W4377108319 cites W2157546299 @default.
- W4377108319 cites W2159242554 @default.
- W4377108319 cites W2159862192 @default.
- W4377108319 cites W2167641660 @default.
- W4377108319 cites W2167822639 @default.
- W4377108319 cites W2319212064 @default.
- W4377108319 cites W2343741871 @default.
- W4377108319 cites W2526754259 @default.
- W4377108319 cites W2527733746 @default.
- W4377108319 cites W2593371527 @default.
- W4377108319 cites W2596422753 @default.
- W4377108319 cites W2606905669 @default.
- W4377108319 cites W2751884637 @default.
- W4377108319 cites W2765827677 @default.
- W4377108319 cites W2776546355 @default.
- W4377108319 cites W2893953311 @default.
- W4377108319 cites W2898648987 @default.
- W4377108319 cites W2899475577 @default.
- W4377108319 cites W2949763225 @default.
- W4377108319 cites W2953079170 @default.
- W4377108319 cites W2956451617 @default.
- W4377108319 cites W2958415980 @default.
- W4377108319 cites W2964012034 @default.
- W4377108319 cites W2969047574 @default.
- W4377108319 cites W2977330744 @default.
- W4377108319 cites W2980059333 @default.
- W4377108319 cites W2982954585 @default.
- W4377108319 cites W2984235388 @default.
- W4377108319 cites W2989841568 @default.
- W4377108319 cites W2999027152 @default.
- W4377108319 cites W3005845319 @default.
- W4377108319 cites W3043047058 @default.
- W4377108319 cites W3106751704 @default.
- W4377108319 cites W3160891011 @default.
- W4377108319 cites W4205311651 @default.
- W4377108319 cites W4220861539 @default.
- W4377108319 cites W4220988610 @default.
- W4377108319 cites W4232361801 @default.
- W4377108319 cites W4249809056 @default.
- W4377108319 cites W4295750005 @default.
- W4377108319 cites W4308545026 @default.
- W4377108319 cites W4317653914 @default.
- W4377108319 cites W4366064938 @default.
- W4377108319 doi "https://doi.org/10.3389/fninf.2023.1175886" @default.
- W4377108319 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/37274751" @default.
- W4377108319 hasPublicationYear "2023" @default.