Matches in SemOpenAlex for { <https://semopenalex.org/work/W4377137293> ?p ?o ?g. }
- W4377137293 endingPage "100792" @default.
- W4377137293 startingPage "100792" @default.
- W4377137293 abstract "Assessing the status of malaria transmission in endemic areas becomes increasingly challenging as countries approach elimination. Serology can provide robust estimates of malaria transmission intensities, and multiplex serological assays allow for simultaneous assessment of markers of recent and historical malaria exposure.Here, we evaluated different statistical and machine learning methods for analyzing multiplex malaria-specific antibody response data to classify recent and historical exposure to Plasmodium falciparum and Plasmodium vivax. To assess these methods, we utilized samples from a health-facility based survey (n = 9132) in the Philippines, where we quantified antibody responses against 8 P. falciparum and 6 P. vivax-specific antigens from 3 sites with varying transmission intensity.Measurements of antibody responses and seroprevalence were consistent with the 3 sites' known endemicity status. Among the models tested, a machine learning (ML) approach (Random Forest model) using 4 serological markers (PfGLURP R2, Etramp5.Ag1, GEXP18, and PfMSP119) gave better predictions for P. falciparum recent infection in Palawan (AUC: 0.9591, CI 0.9497-0.9684) than individual antigen seropositivity. Although the ML approach did not improve P. vivax infection predictions, ML classifications confirmed the absence of recent exposure to P. falciparum and P. vivax in both Occidental Mindoro and Bataan. For predicting historical P. falciparum and P. vivax transmission, seroprevalence and seroconversion rates based on cumulative exposure markers AMA1 and MSP119 showed reliable trends in the 3 sites.Our study emphasizes the utility of serological markers in predicting recent and historical exposure in a sub-national elimination setting, and also highlights the potential use of machine learning models using multiplex antibody responses to improve assessment of the malaria transmission status of countries aiming for elimination. This work also provides baseline antibody data for monitoring risk in malaria-endemic areas in the Philippines.Newton Fund, Philippine Council for Health Research and Development, UK Medical Research Council." @default.
- W4377137293 created "2023-05-21" @default.
- W4377137293 creator A5008912785 @default.
- W4377137293 creator A5009787391 @default.
- W4377137293 creator A5015362709 @default.
- W4377137293 creator A5026124300 @default.
- W4377137293 creator A5031676234 @default.
- W4377137293 creator A5032412760 @default.
- W4377137293 creator A5036407399 @default.
- W4377137293 creator A5037076197 @default.
- W4377137293 creator A5039290842 @default.
- W4377137293 creator A5040273455 @default.
- W4377137293 creator A5052828429 @default.
- W4377137293 creator A5067547469 @default.
- W4377137293 creator A5070035976 @default.
- W4377137293 creator A5074628748 @default.
- W4377137293 date "2023-08-01" @default.
- W4377137293 modified "2023-10-17" @default.
- W4377137293 title "Analytical approaches for antimalarial antibody responses to confirm historical and recent malaria transmission: an example from the Philippines" @default.
- W4377137293 cites W1767646221 @default.
- W4377137293 cites W1872721700 @default.
- W4377137293 cites W1892986689 @default.
- W4377137293 cites W1967015536 @default.
- W4377137293 cites W1970914759 @default.
- W4377137293 cites W2000919804 @default.
- W4377137293 cites W2011534852 @default.
- W4377137293 cites W2019697277 @default.
- W4377137293 cites W2031657955 @default.
- W4377137293 cites W2033215269 @default.
- W4377137293 cites W2037527898 @default.
- W4377137293 cites W2076732602 @default.
- W4377137293 cites W2078554713 @default.
- W4377137293 cites W2081354450 @default.
- W4377137293 cites W2091354877 @default.
- W4377137293 cites W2114797372 @default.
- W4377137293 cites W2116168912 @default.
- W4377137293 cites W2121441990 @default.
- W4377137293 cites W2127166169 @default.
- W4377137293 cites W2132409323 @default.
- W4377137293 cites W2144187066 @default.
- W4377137293 cites W2161535656 @default.
- W4377137293 cites W2182297090 @default.
- W4377137293 cites W2199987764 @default.
- W4377137293 cites W2248884943 @default.
- W4377137293 cites W2256152233 @default.
- W4377137293 cites W2273337512 @default.
- W4377137293 cites W2396788880 @default.
- W4377137293 cites W2524562796 @default.
- W4377137293 cites W2546501775 @default.
- W4377137293 cites W2580185183 @default.
- W4377137293 cites W2586446632 @default.
- W4377137293 cites W2593797979 @default.
- W4377137293 cites W2607746191 @default.
- W4377137293 cites W2743045386 @default.
- W4377137293 cites W2761522345 @default.
- W4377137293 cites W2802572370 @default.
- W4377137293 cites W2808297465 @default.
- W4377137293 cites W2808471058 @default.
- W4377137293 cites W2909719891 @default.
- W4377137293 cites W2911817059 @default.
- W4377137293 cites W2942496807 @default.
- W4377137293 cites W2951329117 @default.
- W4377137293 cites W3001160117 @default.
- W4377137293 cites W3023315501 @default.
- W4377137293 cites W3024714861 @default.
- W4377137293 cites W3083798293 @default.
- W4377137293 cites W3088442800 @default.
- W4377137293 cites W3099527538 @default.
- W4377137293 cites W3116955314 @default.
- W4377137293 cites W3121278889 @default.
- W4377137293 cites W3134936059 @default.
- W4377137293 cites W3135621829 @default.
- W4377137293 cites W4248183909 @default.
- W4377137293 doi "https://doi.org/10.1016/j.lanwpc.2023.100792" @default.
- W4377137293 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/37693871" @default.
- W4377137293 hasPublicationYear "2023" @default.
- W4377137293 type Work @default.
- W4377137293 citedByCount "0" @default.
- W4377137293 crossrefType "journal-article" @default.
- W4377137293 hasAuthorship W4377137293A5008912785 @default.
- W4377137293 hasAuthorship W4377137293A5009787391 @default.
- W4377137293 hasAuthorship W4377137293A5015362709 @default.
- W4377137293 hasAuthorship W4377137293A5026124300 @default.
- W4377137293 hasAuthorship W4377137293A5031676234 @default.
- W4377137293 hasAuthorship W4377137293A5032412760 @default.
- W4377137293 hasAuthorship W4377137293A5036407399 @default.
- W4377137293 hasAuthorship W4377137293A5037076197 @default.
- W4377137293 hasAuthorship W4377137293A5039290842 @default.
- W4377137293 hasAuthorship W4377137293A5040273455 @default.
- W4377137293 hasAuthorship W4377137293A5052828429 @default.
- W4377137293 hasAuthorship W4377137293A5067547469 @default.
- W4377137293 hasAuthorship W4377137293A5070035976 @default.
- W4377137293 hasAuthorship W4377137293A5074628748 @default.
- W4377137293 hasBestOaLocation W43771372931 @default.
- W4377137293 hasConcept C159047783 @default.
- W4377137293 hasConcept C159654299 @default.
- W4377137293 hasConcept C203014093 @default.
- W4377137293 hasConcept C2777451964 @default.