Matches in SemOpenAlex for { <https://semopenalex.org/work/W4377138049> ?p ?o ?g. }
- W4377138049 endingPage "100119" @default.
- W4377138049 startingPage "100119" @default.
- W4377138049 abstract "The delineating of bedrock from sediment is one of the most important phases in the fundamental process of regional bedrock identification and mapping, and it is usually manually performed using high-resolution optical remote-sensing images or Light Detection and Ranging (LiDAR) data. This task, although straightforward, is time consuming and requires extensive and specialized labor. We contribute to this line of research by proposing an automated approach that uses cloud computing, deep learning, fully convolutional neural networks, and a U-Net model applied in Google Collaboratory (Colab). Specifically, we tested this method on a site in southwestern Norway using both a set of explanatory variables generated from a 10 m resolution digital elevation model (DEM) and, for comparison, cloud-based Landsat 8 data. Results show an automatic delineation performance measured by an F1 score between 77% and 84% for DEM terrain derivatives against a manually-mapped ground truth. Overall, our automated bedrock identification model reveals very promising results within its constraints." @default.
- W4377138049 created "2023-05-21" @default.
- W4377138049 creator A5004993070 @default.
- W4377138049 creator A5014402882 @default.
- W4377138049 creator A5025061564 @default.
- W4377138049 creator A5059764775 @default.
- W4377138049 creator A5070241337 @default.
- W4377138049 date "2023-06-01" @default.
- W4377138049 modified "2023-10-12" @default.
- W4377138049 title "Where are the outcrops? Automatic delineation of bedrock from sediments using Deep-Learning techniques" @default.
- W4377138049 cites W1861222642 @default.
- W4377138049 cites W1956284831 @default.
- W4377138049 cites W1984020445 @default.
- W4377138049 cites W2013725197 @default.
- W4377138049 cites W2034044894 @default.
- W4377138049 cites W2058011294 @default.
- W4377138049 cites W2066730534 @default.
- W4377138049 cites W2107624699 @default.
- W4377138049 cites W2234863202 @default.
- W4377138049 cites W2276770356 @default.
- W4377138049 cites W2346062110 @default.
- W4377138049 cites W2395611524 @default.
- W4377138049 cites W2412588858 @default.
- W4377138049 cites W2508429489 @default.
- W4377138049 cites W2589404658 @default.
- W4377138049 cites W2594522244 @default.
- W4377138049 cites W2782522152 @default.
- W4377138049 cites W2896139965 @default.
- W4377138049 cites W2896335697 @default.
- W4377138049 cites W2900137774 @default.
- W4377138049 cites W2901312569 @default.
- W4377138049 cites W2947411064 @default.
- W4377138049 cites W2963008249 @default.
- W4377138049 cites W2972835944 @default.
- W4377138049 cites W3004442222 @default.
- W4377138049 cites W3024810126 @default.
- W4377138049 cites W3080549061 @default.
- W4377138049 cites W3106769307 @default.
- W4377138049 cites W3135028703 @default.
- W4377138049 cites W3138010375 @default.
- W4377138049 cites W3172365935 @default.
- W4377138049 cites W3173420347 @default.
- W4377138049 cites W3207457420 @default.
- W4377138049 cites W3208172463 @default.
- W4377138049 doi "https://doi.org/10.1016/j.acags.2023.100119" @default.
- W4377138049 hasPublicationYear "2023" @default.
- W4377138049 type Work @default.
- W4377138049 citedByCount "2" @default.
- W4377138049 countsByYear W43771380492023 @default.
- W4377138049 crossrefType "journal-article" @default.
- W4377138049 hasAuthorship W4377138049A5004993070 @default.
- W4377138049 hasAuthorship W4377138049A5014402882 @default.
- W4377138049 hasAuthorship W4377138049A5025061564 @default.
- W4377138049 hasAuthorship W4377138049A5059764775 @default.
- W4377138049 hasAuthorship W4377138049A5070241337 @default.
- W4377138049 hasBestOaLocation W43771380491 @default.
- W4377138049 hasConcept C114793014 @default.
- W4377138049 hasConcept C116834253 @default.
- W4377138049 hasConcept C127313418 @default.
- W4377138049 hasConcept C137527640 @default.
- W4377138049 hasConcept C146849305 @default.
- W4377138049 hasConcept C154945302 @default.
- W4377138049 hasConcept C161840515 @default.
- W4377138049 hasConcept C169212394 @default.
- W4377138049 hasConcept C181843262 @default.
- W4377138049 hasConcept C205649164 @default.
- W4377138049 hasConcept C41008148 @default.
- W4377138049 hasConcept C58640448 @default.
- W4377138049 hasConcept C59822182 @default.
- W4377138049 hasConcept C62649853 @default.
- W4377138049 hasConcept C81363708 @default.
- W4377138049 hasConcept C86803240 @default.
- W4377138049 hasConceptScore W4377138049C114793014 @default.
- W4377138049 hasConceptScore W4377138049C116834253 @default.
- W4377138049 hasConceptScore W4377138049C127313418 @default.
- W4377138049 hasConceptScore W4377138049C137527640 @default.
- W4377138049 hasConceptScore W4377138049C146849305 @default.
- W4377138049 hasConceptScore W4377138049C154945302 @default.
- W4377138049 hasConceptScore W4377138049C161840515 @default.
- W4377138049 hasConceptScore W4377138049C169212394 @default.
- W4377138049 hasConceptScore W4377138049C181843262 @default.
- W4377138049 hasConceptScore W4377138049C205649164 @default.
- W4377138049 hasConceptScore W4377138049C41008148 @default.
- W4377138049 hasConceptScore W4377138049C58640448 @default.
- W4377138049 hasConceptScore W4377138049C59822182 @default.
- W4377138049 hasConceptScore W4377138049C62649853 @default.
- W4377138049 hasConceptScore W4377138049C81363708 @default.
- W4377138049 hasConceptScore W4377138049C86803240 @default.
- W4377138049 hasLocation W43771380491 @default.
- W4377138049 hasOpenAccess W4377138049 @default.
- W4377138049 hasPrimaryLocation W43771380491 @default.
- W4377138049 hasRelatedWork W106958512 @default.
- W4377138049 hasRelatedWork W1968883234 @default.
- W4377138049 hasRelatedWork W2093166460 @default.
- W4377138049 hasRelatedWork W2111392050 @default.
- W4377138049 hasRelatedWork W2119746558 @default.
- W4377138049 hasRelatedWork W2133458356 @default.
- W4377138049 hasRelatedWork W2549299049 @default.