Matches in SemOpenAlex for { <https://semopenalex.org/work/W4377140104> ?p ?o ?g. }
- W4377140104 endingPage "32" @default.
- W4377140104 startingPage "1" @default.
- W4377140104 abstract "Sentiment and emotion, which correspond to long-term and short-lived human feelings, are closely linked to each other, leading to the fact that sentiment analysis and emotion recognition are also two interdependent tasks in natural language processing (NLP). One task often leverages the shared knowledge from another task and performs better when solved in a joint learning paradigm. Conversational context dependency, multi-modal interaction, and multi-task correlation are three key factors that contribute to this joint paradigm. However, none of the recent approaches have considered them in a unified framework. To fill this gap, we propose a multi-modal, multi-task interactive graph attention network, termed M3GAT, to simultaneously solve the three problems. At the heart of the model is a proposed interactive conversation graph layer containing three core sub-modules, which are: (1) local-global context connection for modeling both local and global conversational context, (2) cross-modal connection for learning multi-modal complementary and (3) cross-task connection for capturing the correlation across two tasks. Comprehensive experiments on three benchmarking datasets, MELD, MEISD, and MSED, show the effectiveness of M3GAT over state-of-the-art baselines with the margin of 1.88%, 5.37%, and 0.19% for sentiment analysis, and 1.99%, 3.65%, and 0.13% for emotion recognition, respectively. In addition, we also show the superiority of multi-task learning over the single-task framework." @default.
- W4377140104 created "2023-05-21" @default.
- W4377140104 creator A5011400640 @default.
- W4377140104 creator A5024519688 @default.
- W4377140104 creator A5031202827 @default.
- W4377140104 creator A5045540621 @default.
- W4377140104 creator A5045580078 @default.
- W4377140104 creator A5050532724 @default.
- W4377140104 creator A5054835425 @default.
- W4377140104 creator A5060941733 @default.
- W4377140104 creator A5089138085 @default.
- W4377140104 creator A5091984139 @default.
- W4377140104 date "2023-08-21" @default.
- W4377140104 modified "2023-10-03" @default.
- W4377140104 title "M3GAT: A Multi-modal, Multi-task Interactive Graph Attention Network for Conversational Sentiment Analysis and Emotion Recognition" @default.
- W4377140104 cites W2119417805 @default.
- W4377140104 cites W2122563357 @default.
- W4377140104 cites W2156984202 @default.
- W4377140104 cites W2166735950 @default.
- W4377140104 cites W2546875627 @default.
- W4377140104 cites W2554720547 @default.
- W4377140104 cites W2583643061 @default.
- W4377140104 cites W2740550900 @default.
- W4377140104 cites W2799498328 @default.
- W4377140104 cites W2899197626 @default.
- W4377140104 cites W2905551935 @default.
- W4377140104 cites W2910191085 @default.
- W4377140104 cites W2946218857 @default.
- W4377140104 cites W2963533390 @default.
- W4377140104 cites W2963686995 @default.
- W4377140104 cites W2964010806 @default.
- W4377140104 cites W2985882473 @default.
- W4377140104 cites W2997026866 @default.
- W4377140104 cites W3007282427 @default.
- W4377140104 cites W3009260245 @default.
- W4377140104 cites W3012721484 @default.
- W4377140104 cites W3015427680 @default.
- W4377140104 cites W3019577029 @default.
- W4377140104 cites W3025174891 @default.
- W4377140104 cites W3035177206 @default.
- W4377140104 cites W3047624172 @default.
- W4377140104 cites W3081381913 @default.
- W4377140104 cites W3099056802 @default.
- W4377140104 cites W3114968970 @default.
- W4377140104 cites W3115679279 @default.
- W4377140104 cites W3119339920 @default.
- W4377140104 cites W3127474142 @default.
- W4377140104 cites W3154745533 @default.
- W4377140104 cites W3159075545 @default.
- W4377140104 cites W3176719207 @default.
- W4377140104 cites W4205339613 @default.
- W4377140104 cites W4211186029 @default.
- W4377140104 cites W4224212929 @default.
- W4377140104 doi "https://doi.org/10.1145/3593583" @default.
- W4377140104 hasPublicationYear "2023" @default.
- W4377140104 type Work @default.
- W4377140104 citedByCount "1" @default.
- W4377140104 countsByYear W43771401042023 @default.
- W4377140104 crossrefType "journal-article" @default.
- W4377140104 hasAuthorship W4377140104A5011400640 @default.
- W4377140104 hasAuthorship W4377140104A5024519688 @default.
- W4377140104 hasAuthorship W4377140104A5031202827 @default.
- W4377140104 hasAuthorship W4377140104A5045540621 @default.
- W4377140104 hasAuthorship W4377140104A5045580078 @default.
- W4377140104 hasAuthorship W4377140104A5050532724 @default.
- W4377140104 hasAuthorship W4377140104A5054835425 @default.
- W4377140104 hasAuthorship W4377140104A5060941733 @default.
- W4377140104 hasAuthorship W4377140104A5089138085 @default.
- W4377140104 hasAuthorship W4377140104A5091984139 @default.
- W4377140104 hasBestOaLocation W43771401041 @default.
- W4377140104 hasConcept C132525143 @default.
- W4377140104 hasConcept C138885662 @default.
- W4377140104 hasConcept C144133560 @default.
- W4377140104 hasConcept C151730666 @default.
- W4377140104 hasConcept C154945302 @default.
- W4377140104 hasConcept C162324750 @default.
- W4377140104 hasConcept C162853370 @default.
- W4377140104 hasConcept C17744445 @default.
- W4377140104 hasConcept C185592680 @default.
- W4377140104 hasConcept C185874996 @default.
- W4377140104 hasConcept C187736073 @default.
- W4377140104 hasConcept C188027245 @default.
- W4377140104 hasConcept C199539241 @default.
- W4377140104 hasConcept C204321447 @default.
- W4377140104 hasConcept C2777200299 @default.
- W4377140104 hasConcept C2779343474 @default.
- W4377140104 hasConcept C2780451532 @default.
- W4377140104 hasConcept C28006648 @default.
- W4377140104 hasConcept C41008148 @default.
- W4377140104 hasConcept C41895202 @default.
- W4377140104 hasConcept C66402592 @default.
- W4377140104 hasConcept C71139939 @default.
- W4377140104 hasConcept C80444323 @default.
- W4377140104 hasConcept C86251818 @default.
- W4377140104 hasConcept C86803240 @default.
- W4377140104 hasConceptScore W4377140104C132525143 @default.
- W4377140104 hasConceptScore W4377140104C138885662 @default.
- W4377140104 hasConceptScore W4377140104C144133560 @default.