Matches in SemOpenAlex for { <https://semopenalex.org/work/W4377143209> ?p ?o ?g. }
- W4377143209 endingPage "118177" @default.
- W4377143209 startingPage "118177" @default.
- W4377143209 abstract "Preparation of pipeline risk zoning is essential for pipeline construction and safe operation. Landslides are one of the main sources of risk to the safe operations of oil and gas pipelines in mountainous areas. This work aims to propose a quantitative assessment model of landslide-induced long-distance pipeline risk by analyzing historical landslide hazard data along oil and gas pipelines. Using the Changshou-Fuling-Wulong-Nanchuan (CN) gas pipeline dataset, two independent assessments were carried out: landslide susceptibility assessment and pipeline vulnerability assessment. Firstly, the study combined the recursive feature elimination and particle swarm optimization-AdaBoost method (RFE-PSO-AdaBoost) to develop a landslide susceptibility mapping model. The RFE method was used to select the conditioning factors, while PSO was used to tune the hyper-parameters. Secondly, considering the angular relationship between the pipelines and landslides, and the segmentation of the pipelines using the fuzzy clustering (FC), the CRITIC method (FC-CRITIC) was combined to develop a pipeline vulnerability assessment model. Accordingly, a pipeline risk map was obtained based on pipeline vulnerability and landslide susceptibility assessment. The study results show that almost 35.3% of the slope units were in extremely high susceptibility zones, 6.68% of the pipelines were in extremely high vulnerability areas, the southern and eastern pipelines segmented in the study area were located in high risk areas and coincided well with the distribution of landslides. The proposed hybrid machine learning model for landslide-oriented risk assessment of long-distance pipelines can provide a scientific and reasonable risk classification for new planning or in service pipelines to avoid landslide-oriented risk and ensure their safe operation in mountainous areas." @default.
- W4377143209 created "2023-05-21" @default.
- W4377143209 creator A5013690668 @default.
- W4377143209 creator A5019388756 @default.
- W4377143209 creator A5021855032 @default.
- W4377143209 creator A5063963657 @default.
- W4377143209 creator A5090162220 @default.
- W4377143209 date "2023-09-01" @default.
- W4377143209 modified "2023-10-17" @default.
- W4377143209 title "A hybrid machine learning model for landslide-oriented risk assessment of long-distance pipelines" @default.
- W4377143209 cites W1972190632 @default.
- W4377143209 cites W1972331545 @default.
- W4377143209 cites W1988790447 @default.
- W4377143209 cites W2013632200 @default.
- W4377143209 cites W2052914200 @default.
- W4377143209 cites W2059520581 @default.
- W4377143209 cites W2066495914 @default.
- W4377143209 cites W2074897389 @default.
- W4377143209 cites W2078730937 @default.
- W4377143209 cites W2091455951 @default.
- W4377143209 cites W2122447387 @default.
- W4377143209 cites W2143426320 @default.
- W4377143209 cites W2168982675 @default.
- W4377143209 cites W2170410701 @default.
- W4377143209 cites W2342699395 @default.
- W4377143209 cites W2530563849 @default.
- W4377143209 cites W2573137292 @default.
- W4377143209 cites W2593566585 @default.
- W4377143209 cites W2609194414 @default.
- W4377143209 cites W2733722625 @default.
- W4377143209 cites W2762568546 @default.
- W4377143209 cites W2766212223 @default.
- W4377143209 cites W2774180585 @default.
- W4377143209 cites W2776819710 @default.
- W4377143209 cites W2783350994 @default.
- W4377143209 cites W2788433893 @default.
- W4377143209 cites W2789555074 @default.
- W4377143209 cites W2792546905 @default.
- W4377143209 cites W2793831793 @default.
- W4377143209 cites W2799327076 @default.
- W4377143209 cites W2888269660 @default.
- W4377143209 cites W2891027816 @default.
- W4377143209 cites W2938016784 @default.
- W4377143209 cites W2945425615 @default.
- W4377143209 cites W2973273165 @default.
- W4377143209 cites W2996089053 @default.
- W4377143209 cites W2999310044 @default.
- W4377143209 cites W3006159368 @default.
- W4377143209 cites W3045004532 @default.
- W4377143209 cites W3046654040 @default.
- W4377143209 cites W3125980449 @default.
- W4377143209 cites W3159603761 @default.
- W4377143209 cites W3202723511 @default.
- W4377143209 cites W4280523339 @default.
- W4377143209 cites W4283323489 @default.
- W4377143209 cites W4294415625 @default.
- W4377143209 cites W4294576368 @default.
- W4377143209 cites W4318683761 @default.
- W4377143209 doi "https://doi.org/10.1016/j.jenvman.2023.118177" @default.
- W4377143209 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/37210819" @default.
- W4377143209 hasPublicationYear "2023" @default.
- W4377143209 type Work @default.
- W4377143209 citedByCount "6" @default.
- W4377143209 countsByYear W43771432092023 @default.
- W4377143209 crossrefType "journal-article" @default.
- W4377143209 hasAuthorship W4377143209A5013690668 @default.
- W4377143209 hasAuthorship W4377143209A5019388756 @default.
- W4377143209 hasAuthorship W4377143209A5021855032 @default.
- W4377143209 hasAuthorship W4377143209A5063963657 @default.
- W4377143209 hasAuthorship W4377143209A5090162220 @default.
- W4377143209 hasConcept C112930515 @default.
- W4377143209 hasConcept C12174686 @default.
- W4377143209 hasConcept C127413603 @default.
- W4377143209 hasConcept C137176749 @default.
- W4377143209 hasConcept C15744967 @default.
- W4377143209 hasConcept C16674752 @default.
- W4377143209 hasConcept C167063184 @default.
- W4377143209 hasConcept C175309249 @default.
- W4377143209 hasConcept C178790620 @default.
- W4377143209 hasConcept C185592680 @default.
- W4377143209 hasConcept C186295008 @default.
- W4377143209 hasConcept C187320778 @default.
- W4377143209 hasConcept C199360897 @default.
- W4377143209 hasConcept C38652104 @default.
- W4377143209 hasConcept C41008148 @default.
- W4377143209 hasConcept C43521106 @default.
- W4377143209 hasConcept C49261128 @default.
- W4377143209 hasConcept C542102704 @default.
- W4377143209 hasConcept C71924100 @default.
- W4377143209 hasConcept C87717796 @default.
- W4377143209 hasConcept C95713431 @default.
- W4377143209 hasConceptScore W4377143209C112930515 @default.
- W4377143209 hasConceptScore W4377143209C12174686 @default.
- W4377143209 hasConceptScore W4377143209C127413603 @default.
- W4377143209 hasConceptScore W4377143209C137176749 @default.
- W4377143209 hasConceptScore W4377143209C15744967 @default.
- W4377143209 hasConceptScore W4377143209C16674752 @default.
- W4377143209 hasConceptScore W4377143209C167063184 @default.