Matches in SemOpenAlex for { <https://semopenalex.org/work/W4377157427> ?p ?o ?g. }
- W4377157427 endingPage "112536" @default.
- W4377157427 startingPage "112536" @default.
- W4377157427 abstract "•PTEN’s ability to enhance ferroptosis contributes to its tumor suppressor function•PTEN antagonizes cysteine metabolism by restraining expression of xCT•Activated AKT because of PTEN loss upregulates xCT through the GSK3β-NRF2 axis•PTEN-mutant cells are found to be resistant to ferroptosis because of elevated xCT Here, we show that the tumor suppressor phosphatase and tensin homolog deleted from chromosome 10 (PTEN) sensitizes cells to ferroptosis, an iron-dependent form of cell death, by restraining the expression and activity of the cystine/glutamate antiporter system Xc− (xCT). Loss of PTEN activates AKT kinase to inhibit GSK3β, increasing NF-E2 p45-related factor 2 (NRF2) along with transcription of one of its known target genes encoding xCT. Elevated xCT in Pten-null mouse embryonic fibroblasts increases the flux of cystine transport and synthesis of glutathione, which enhances the steady-state levels of these metabolites. A pan-cancer analysis finds that loss of PTEN shows evidence of increased xCT, and PTEN-mutant cells are resistant to ferroptosis as a consequence of elevated xCT. These findings suggest that selection of PTEN mutation during tumor development may be due to its ability to confer resistance to ferroptosis in the setting of metabolic and oxidative stress that occurs during tumor initiation and progression. Here, we show that the tumor suppressor phosphatase and tensin homolog deleted from chromosome 10 (PTEN) sensitizes cells to ferroptosis, an iron-dependent form of cell death, by restraining the expression and activity of the cystine/glutamate antiporter system Xc− (xCT). Loss of PTEN activates AKT kinase to inhibit GSK3β, increasing NF-E2 p45-related factor 2 (NRF2) along with transcription of one of its known target genes encoding xCT. Elevated xCT in Pten-null mouse embryonic fibroblasts increases the flux of cystine transport and synthesis of glutathione, which enhances the steady-state levels of these metabolites. A pan-cancer analysis finds that loss of PTEN shows evidence of increased xCT, and PTEN-mutant cells are resistant to ferroptosis as a consequence of elevated xCT. These findings suggest that selection of PTEN mutation during tumor development may be due to its ability to confer resistance to ferroptosis in the setting of metabolic and oxidative stress that occurs during tumor initiation and progression. Regulated cell death has been known for decades, and distinct molecular types of regulated cell death have been elucidated, including apoptosis, necrosis, and autophagy.1Galluzzi L. Vitale I. Aaronson S.A. Abrams J.M. Adam D. Agostinis P. Alnemri E.S. Altucci L. Amelio I. Andrews D.W. et al.Molecular mechanisms of cell death: recommendations of the nomenclature committee on cell death 2018.Cell Death Differ. 2018; 25: 486-541https://doi.org/10.1038/s41418-017-0012-4Crossref PubMed Scopus (2937) Google Scholar,2Danial N.N. Korsmeyer S.J. Cell death: critical control points.Cell. 2004; 116: 205-219https://doi.org/10.1016/s0092-8674(04)00046-7Abstract Full Text Full Text PDF PubMed Scopus (0) Google Scholar,3Mizushima N. Autophagy: process and function.Genes Dev. 2007; 21: 2861-2873https://doi.org/10.1101/gad.1599207Crossref PubMed Scopus (3006) Google Scholar,4Taylor R.C. Cullen S.P. Martin S.J. Apoptosis: controlled demolition at the cellular level.Nat. Rev. Mol. Cell Biol. 2008; 9: 231-241https://doi.org/10.1038/nrm2312Crossref PubMed Scopus (1945) Google Scholar,5Vanden Berghe T. Linkermann A. Jouan-Lanhouet S. Walczak H. Vandenabeele P. Regulated necrosis: the expanding network of non-apoptotic cell death pathways.Nat. Rev. Mol. Cell Biol. 2014; 15: 135-147https://doi.org/10.1038/nrm3737Crossref PubMed Scopus (1191) Google Scholar Ferroptosis, a relative newcomer to the field of programmed cell death pathways, has only recently become better appreciated.6Yang W.S. Stockwell B.R. Synthetic lethal screening identifies compounds activating iron-dependent, nonapoptotic cell death in oncogenic-RAS-harboring cancer cells.Chem. Biol. 2008; 15: 234-245https://doi.org/10.1016/j.chembiol.2008.02.010Abstract Full Text Full Text PDF PubMed Scopus (911) Google Scholar,7Seiler A. Schneider M. Förster H. Roth S. Wirth E.K. Culmsee C. Plesnila N. Kremmer E. Rådmark O. Wurst W. et al.Glutathione peroxidase 4 senses and translates oxidative stress into 12/15-lipoxygenase dependent- and AIF-mediated cell death.Cell Metabol. 2008; 8: 237-248https://doi.org/10.1016/j.cmet.2008.07.005Abstract Full Text Full Text PDF PubMed Scopus (835) Google Scholar,8Dolma S. Lessnick S.L. Hahn W.C. Stockwell B.R. Identification of genotype-selective antitumor agents using synthetic lethal chemical screening in engineered human tumor cells.Cancer Cell. 2003; 3: 285-296https://doi.org/10.1016/s1535-6108(03)00050-3Abstract Full Text Full Text PDF PubMed Scopus (0) Google Scholar,9Yagoda N. von Rechenberg M. Zaganjor E. Bauer A.J. Yang W.S. Fridman D.J. Wolpaw A.J. Smukste I. Peltier J.M. Boniface J.J. et al.RAS-RAF-MEK-dependent oxidative cell death involving voltage-dependent anion channels.Nature. 2007; 447: 864-868https://doi.org/10.1038/nature05859Crossref PubMed Scopus (887) Google Scholar,10Dixon S.J. Lemberg K.M. Lamprecht M.R. Skouta R. Zaitsev E.M. Gleason C.E. Patel D.N. Bauer A.J. Cantley A.M. Yang W.S. et al.Ferroptosis: an iron-dependent form of nonapoptotic cell death.Cell. 2012; 149: 1060-1072https://doi.org/10.1016/j.cell.2012.03.042Abstract Full Text Full Text PDF PubMed Scopus (6234) Google Scholar While certain aspects have been observed since the 1950s, it was not until 2012 that ferroptosis was characterized and recognized as a morphologically, biochemically, and genetically distinct form of regulated cell death.11Coltorti M. De Ritis F. Giusti G. [Enzymatic mechanisms of transsulfuration in biology and clinical practice].G. Clin. Med. (Bologna). 1956; 37: 285-323PubMed Google Scholar,12Eagle H. Piez K.A. Oyama V.I. The biosynthesis of cystine in human cell cultures.J. Biol. Chem. 1961; 236: 1425-1428Abstract Full Text PDF PubMed Google Scholar,13Eagle H. Nutrition needs of mammalian cells in tissue culture.Science. 1955; 122: 501-514https://doi.org/10.1126/science.122.3168.501Crossref PubMed Scopus (755) Google Scholar Ferroptosis is driven by iron-dependent peroxidation, which ultimately leads to loss of plasma membrane integrity and cell death. The physiological importance of ferroptosis in diseases such as cancer, stroke, and neurodegeneration has been established.14Wang W. Green M. Choi J.E. Gijón M. Kennedy P.D. Johnson J.K. Liao P. Lang X. Kryczek I. Sell A. et al.CD8(+) T cells regulate tumour ferroptosis during cancer immunotherapy.Nature. 2019; 569: 270-274https://doi.org/10.1038/s41586-019-1170-yCrossref PubMed Scopus (1063) Google Scholar,15Jiang X. Stockwell B.R. Conrad M. Ferroptosis: mechanisms, biology and role in disease.Nat. Rev. Mol. Cell Biol. 2021; 22: 266-282https://doi.org/10.1038/s41580-020-00324-8Crossref PubMed Scopus (1045) Google Scholar,16Schnurr K. Borchert A. Kuhn H. Inverse regulation of lipid-peroxidizing and hydroperoxyl lipid-reducing enzymes by interleukins 4 and 13.Faseb. J. 1999; 13: 143-154https://doi.org/10.1096/fasebj.13.1.143Crossref PubMed Scopus (49) Google Scholar,17Friedmann Angeli J.P. Schneider M. Proneth B. Tyurina Y.Y. Tyurin V.A. Hammond V.J. Herbach N. Aichler M. Walch A. Eggenhofer E. et al.Inactivation of the ferroptosis regulator Gpx4 triggers acute renal failure in mice.Nat. Cell Biol. 2014; 16: 1180-1191https://doi.org/10.1038/ncb3064Crossref PubMed Scopus (1668) Google Scholar,18Fang X. Wang H. Han D. Xie E. Yang X. Wei J. Gu S. Gao F. Zhu N. Yin X. et al.Ferroptosis as a target for protection against cardiomyopathy.Proc. Natl. Acad. Sci. USA. 2019; 116: 2672-2680https://doi.org/10.1073/pnas.1821022116Crossref PubMed Scopus (820) Google Scholar,19Gao M. Monian P. Quadri N. Ramasamy R. Jiang X. Glutaminolysis and transferrin regulate ferroptosis.Mol. Cell. 2015; 59: 298-308https://doi.org/10.1016/j.molcel.2015.06.011Abstract Full Text Full Text PDF PubMed Scopus (979) Google Scholar,20Skouta R. Dixon S.J. Wang J. Dunn D.E. Orman M. Shimada K. Rosenberg P.A. Lo D.C. Weinberg J.M. Linkermann A. Stockwell B.R. Ferrostatins inhibit oxidative lipid damage and cell death in diverse disease models.J. Am. Chem. Soc. 2014; 136: 4551-4556https://doi.org/10.1021/ja411006aCrossref PubMed Scopus (591) Google Scholar,21Gao M. Yi J. Zhu J. Minikes A.M. Monian P. Thompson C.B. Jiang X. Role of mitochondria in ferroptosis.Mol. Cell. 2019; 73: 354-363.e3https://doi.org/10.1016/j.molcel.2018.10.042Abstract Full Text Full Text PDF PubMed Scopus (689) Google Scholar The selenoprotein glutathione peroxidase 4 (GPX4) and its cofactor glutathione (GSH) neutralize lipid peroxides and effectively protect cells from ferroptosis.22Yang W.S. SriRamaratnam R. Welsch M.E. Shimada K. Skouta R. Viswanathan V.S. Cheah J.H. Clemons P.A. Shamji A.F. Clish C.B. et al.Regulation of ferroptotic cancer cell death by GPX4.Cell. 2014; 156: 317-331https://doi.org/10.1016/j.cell.2013.12.010Abstract Full Text Full Text PDF PubMed Scopus (2998) Google Scholar,23Ursini F. Maiorino M. Gregolin C. The selenoenzyme phospholipid hydroperoxide glutathione peroxidase.Biochim. Biophys. Acta. 1985; 839: 62-70https://doi.org/10.1016/0304-4165(85)90182-5Crossref PubMed Scopus (767) Google Scholar As an essential antioxidant and building block of GSH, cysteine also plays an integral role in ferroptosis regulation by modulating GSH levels. While cysteine can be imported into cells through neutral amino transporters, the bulk of extracellular cysteine exists in its oxidized form, cystine, which is solely imported by the cystine-glutamate transporter system Xc− (xCT), encoded by the gene SLC7A11.24Al-Saleh E.A. Wheeler K.P. Transport of neutral amino acids by human erythrocytes.Biochim. Biophys. Acta. 1982; 684: 157-171https://doi.org/10.1016/0005-2736(82)90001-3Crossref PubMed Scopus (34) Google Scholar,25Christensen H.N. Liang M. Archer E.G. A distinct Na+-requiring transport system for alanine, serine, cysteine, and similar amino acids.J. Biol. Chem. 1967; 242: 5237-5246Abstract Full Text PDF PubMed Google Scholar,26Bannai S. Tateishi N. Role of membrane transport in metabolism and function of glutathione in mammals.J. Membr. Biol. 1986; 89: 1-8https://doi.org/10.1007/BF01870891Crossref PubMed Scopus (305) Google Scholar,27Bannai S. Kitamura E. Transport interaction of L-cystine and L-glutamate in human diploid fibroblasts in culture.J. Biol. Chem. 1980; 255: 2372-2376Abstract Full Text PDF PubMed Google Scholar xCT is expressed as a heterodimer with CD98/4F2hc, which is required for localization to the plasma membrane and for amino acid transporter function.28Bassi M.T. Gasol E. Manzoni M. Pineda M. Riboni M. Martín R. Zorzano A. Borsani G. Palacín M. Identification and characterisation of human xCT that co-expresses, with 4F2 heavy chain, the amino acid transport activity system xc.Pflügers Archiv. 2001; 442: 286-296https://doi.org/10.1007/s004240100537Crossref PubMed Scopus (122) Google Scholar When cystine is imported into the cell, it is rapidly reduced to cysteine and subsequently utilized for GSH synthesis as well as other metabolic processes.29Stipanuk M.H. Dominy Jr., J.E. Lee J.I. Coloso R.M. Mammalian cysteine metabolism: new insights into regulation of cysteine metabolism.J. Nutr. 2006; 136: 1652S-1659Shttps://doi.org/10.1093/jn/136.6.1652SAbstract Full Text Full Text PDF PubMed Google Scholar Perturbing this cystine-xCT-GSH-GPX4 axis increases ferroptosis because of insufficient antioxidant defenses within the cell.10Dixon S.J. Lemberg K.M. Lamprecht M.R. Skouta R. Zaitsev E.M. Gleason C.E. Patel D.N. Bauer A.J. Cantley A.M. Yang W.S. et al.Ferroptosis: an iron-dependent form of nonapoptotic cell death.Cell. 2012; 149: 1060-1072https://doi.org/10.1016/j.cell.2012.03.042Abstract Full Text Full Text PDF PubMed Scopus (6234) Google Scholar One such example occurs through pharmacological inhibition of xCT with erastin or sulfasalazine (SAS), which reduces cystine import and diminishes GSH pools to effectively inhibit GPX4.10Dixon S.J. Lemberg K.M. Lamprecht M.R. Skouta R. Zaitsev E.M. Gleason C.E. Patel D.N. Bauer A.J. Cantley A.M. Yang W.S. et al.Ferroptosis: an iron-dependent form of nonapoptotic cell death.Cell. 2012; 149: 1060-1072https://doi.org/10.1016/j.cell.2012.03.042Abstract Full Text Full Text PDF PubMed Scopus (6234) Google Scholar As a key component of GSH synthesis and oxidative homeostasis, SLC7A11/xCT expression is modulated by multiple transcriptional and epigenetic regulators (NRF2, ATF3, ATF4, ARID1A, p53, BACH1, BRD4, and BAP1), protein stabilizers (OTUB1, SLC3A2, and CD44), and signaling pathways (EGFR, insulin growth factor [IGF], STAT3, transforming growth factor β [TGF-β], interferon γ [IFNγ], RAS, phosphatidylinositol 3-kinase [PI3K], and mTOR).14Wang W. Green M. Choi J.E. Gijón M. Kennedy P.D. Johnson J.K. Liao P. Lang X. Kryczek I. Sell A. et al.CD8(+) T cells regulate tumour ferroptosis during cancer immunotherapy.Nature. 2019; 569: 270-274https://doi.org/10.1038/s41586-019-1170-yCrossref PubMed Scopus (1063) Google Scholar,30Jyotsana N. Ta K.T. DelGiorno K.E. The role of cystine/glutamate antiporter slc7a11/xCT in the pathophysiology of cancer.Front. Oncol. 2022; 12: 858462https://doi.org/10.3389/fonc.2022.858462Crossref PubMed Scopus (24) Google Scholar,31Lim J.K.M. Delaidelli A. Minaker S.W. Zhang H.F. Colovic M. Yang H. Negri G.L. von Karstedt S. Lockwood W.W. Schaffer P. et al.Cystine/glutamate antiporter xCT (SLC7A11) facilitates oncogenic RAS transformation by preserving intracellular redox balance.Proc. Natl. Acad. Sci. USA. 2019; 116: 9433-9442https://doi.org/10.1073/pnas.1821323116Crossref PubMed Scopus (150) Google Scholar,32Kilberg M.S. Shan J. Su N. ATF4-dependent transcription mediates signaling of amino acid limitation.Trends Endocrinol. Metabol. 2009; 20: 436-443https://doi.org/10.1016/j.tem.2009.05.008Abstract Full Text Full Text PDF PubMed Scopus (426) Google Scholar,33Chen D. Fan Z. Rauh M. Buchfelder M. Eyupoglu I.Y. Savaskan N. ATF4 promotes angiogenesis and neuronal cell death and confers ferroptosis in a xCT-dependent manner.Oncogene. 2017; 36: 5593-5608https://doi.org/10.1038/onc.2017.146Crossref PubMed Scopus (206) Google Scholar,34Habib E. Linher-Melville K. Lin H.X. Singh G. Expression of xCT and activity of system xc(-) are regulated by NRF2 in human breast cancer cells in response to oxidative stress.Redox Biol. 2015; 5: 33-42https://doi.org/10.1016/j.redox.2015.03.003Crossref PubMed Scopus (160) Google Scholar,35Jiang L. Kon N. Li T. Wang S.J. Su T. Hibshoosh H. Baer R. Gu W. Ferroptosis as a p53-mediated activity during tumour suppression.Nature. 2015; 520: 57-62https://doi.org/10.1038/nature14344Crossref PubMed Scopus (1488) Google Scholar,36Zhang Y. Shi J. Liu X. Feng L. Gong Z. Koppula P. Sirohi K. Li X. Wei Y. Lee H. et al.BAP1 links metabolic regulation of ferroptosis to tumour suppression.Nat. Cell Biol. 2018; 20: 1181-1192https://doi.org/10.1038/s41556-018-0178-0Crossref PubMed Scopus (418) Google Scholar,37Ogiwara H. Takahashi K. Sasaki M. Kuroda T. Yoshida H. Watanabe R. Maruyama A. Makinoshima H. Chiwaki F. Sasaki H. et al.Targeting the vulnerability of glutathione metabolism in arid1a-deficient cancers.Cancer Cell. 2019; 35: 177-190.e8https://doi.org/10.1016/j.ccell.2018.12.009Abstract Full Text Full Text PDF PubMed Scopus (147) Google Scholar,38Ishimoto T. Nagano O. Yae T. Tamada M. Motohara T. Oshima H. Oshima M. Ikeda T. Asaba R. Yagi H. et al.CD44 variant regulates redox status in cancer cells by stabilizing the xCT subunit of system xc(-) and thereby promotes tumor growth.Cancer Cell. 2011; 19: 387-400https://doi.org/10.1016/j.ccr.2011.01.038Abstract Full Text Full Text PDF PubMed Scopus (864) Google Scholar,39Nakamura E. Sato M. Yang H. Miyagawa F. Harasaki M. Tomita K. Matsuoka S. Noma A. Iwai K. Minato N. 4F2 (CD98) heavy chain is associated covalently with an amino acid transporter and controls intracellular trafficking and membrane topology of 4F2 heterodimer.J. Biol. Chem. 1999; 274: 3009-3016https://doi.org/10.1074/jbc.274.5.3009Abstract Full Text Full Text PDF PubMed Scopus (251) Google Scholar,40Tsuchihashi K. Okazaki S. Ohmura M. Ishikawa M. Sampetrean O. Onishi N. Wakimoto H. Yoshikawa M. Seishima R. Iwasaki Y. et al.The EGF receptor promotes the malignant potential of glioma by regulating amino acid transport system xc(-).Cancer Res. 2016; 76: 2954-2963https://doi.org/10.1158/0008-5472.CAN-15-2121Crossref PubMed Scopus (68) Google Scholar,41Gu Y. Albuquerque C.P. Braas D. Zhang W. Villa G.R. Bi J. Ikegami S. Masui K. Gini B. Yang H. et al.mTORC2 regulates amino acid metabolism in cancer by phosphorylation of the cystine-glutamate antiporter xCT.Mol. Cell. 2017; 67: 128-138.e7https://doi.org/10.1016/j.molcel.2017.05.030Abstract Full Text Full Text PDF PubMed Scopus (118) Google Scholar,42Li C. Chen H. Lan Z. He S. Chen R. Wang F. Liu Z. Li K. Cheng L. Liu Y. et al.mTOR-dependent upregulation of xCT blocks melanin synthesis and promotes tumorigenesis.Cell Death Differ. 2019; 26: 2015-2028https://doi.org/10.1038/s41418-019-0274-0Crossref PubMed Scopus (18) Google Scholar,43Qiang Z. Dong H. Xia Y. Chai D. Hu R. Jiang H. Nrf2 and STAT3 alleviates ferroptosis-mediated IIR-ALI by regulating SLC7A11.Oxid. Med. Cell. Longev. 2020; 2020: 5146982https://doi.org/10.1155/2020/5146982Crossref PubMed Scopus (86) Google Scholar,44Ouyang S. Li H. Lou L. Huang Q. Zhang Z. Mo J. Li M. Lu J. Zhu K. Chu Y. et al.Inhibition of STAT3-ferroptosis negative regulatory axis suppresses tumor growth and alleviates chemoresistance in gastric cancer.Redox Biol. 2022; 52: 102317https://doi.org/10.1016/j.redox.2022.102317Crossref PubMed Scopus (28) Google Scholar,45Wang L. Liu Y. Du T. Yang H. Lei L. Guo M. Ding H.F. Zhang J. Wang H. Chen X. Yan C. ATF3 promotes erastin-induced ferroptosis by suppressing system Xc(.).Cell Death Differ. 2020; 27: 662-675https://doi.org/10.1038/s41418-019-0380-zCrossref PubMed Scopus (235) Google Scholar,46Sui S. Zhang J. Xu S. Wang Q. Wang P. Pang D. Ferritinophagy is required for the induction of ferroptosis by the bromodomain protein BRD4 inhibitor (+)-JQ1 in cancer cells.Cell Death Dis. 2019; 10: 331https://doi.org/10.1038/s41419-019-1564-7Crossref PubMed Scopus (93) Google Scholar,47Liu T. Jiang L. Tavana O. Gu W. The deubiquitylase OTUB1 mediates ferroptosis via stabilization of SLC7A11.Cancer Res. 2019; 79: 1913-1924https://doi.org/10.1158/0008-5472.CAN-18-3037Crossref PubMed Scopus (184) Google Scholar,48Lien E.C. Ghisolfi L. Geck R.C. Asara J.M. Toker A. Oncogenic PI3K promotes methionine dependency in breast cancer cells through the cystine-glutamate antiporter xCT.Sci. Signal. 2017; 10: eaao6604https://doi.org/10.1126/scisignal.aao6604Crossref PubMed Scopus (57) Google Scholar,49Lien E.C. Lyssiotis C.A. Juvekar A. Hu H. Asara J.M. Cantley L.C. Toker A. Glutathione biosynthesis is a metabolic vulnerability in PI(3)K/Akt-driven breast cancer.Nat. Cell Biol. 2016; 18: 572-578https://doi.org/10.1038/ncb3341Crossref PubMed Scopus (167) Google Scholar,50Yang Y. Yee D. IGF-I regulates redox status in breast cancer cells by activating the amino acid transport molecule xC.Cancer Res. 2014; 74: 2295-2305https://doi.org/10.1158/0008-5472.CAN-13-1803Crossref PubMed Scopus (41) Google Scholar,51Nishizawa H. Matsumoto M. Shindo T. Saigusa D. Kato H. Suzuki K. Sato M. Ishii Y. Shimokawa H. Igarashi K. Ferroptosis is controlled by the coordinated transcriptional regulation of glutathione and labile iron metabolism by the transcription factor BACH1.J. Biol. Chem. 2020; 295: 69-82https://doi.org/10.1074/jbc.RA119.009548Abstract Full Text Full Text PDF PubMed Scopus (96) Google Scholar,52Kim D.H. Kim W.D. Kim S.K. Moon D.H. Lee S.J. TGF-beta1-mediated repression of SLC7A11 drives vulnerability to GPX4 inhibition in hepatocellular carcinoma cells.Cell Death Dis. 2020; 11: 406https://doi.org/10.1038/s41419-020-2618-6Crossref PubMed Scopus (77) Google Scholar One of the transcriptional regulators often involved in regulation of SLC7A11 is NF-E2 p45-related factor 2 (NRF2), a transcription factor that acts as a master regulator of antioxidant response and promotes transcription of SLC7A11 in certain contexts, such as oxidative stress.34Habib E. Linher-Melville K. Lin H.X. Singh G. Expression of xCT and activity of system xc(-) are regulated by NRF2 in human breast cancer cells in response to oxidative stress.Redox Biol. 2015; 5: 33-42https://doi.org/10.1016/j.redox.2015.03.003Crossref PubMed Scopus (160) Google Scholar,53Sasaki H. Sato H. Kuriyama-Matsumura K. Sato K. Maebara K. Wang H. Tamba M. Itoh K. Yamamoto M. Bannai S. Electrophile response element-mediated induction of the cystine/glutamate exchange transporter gene expression.J. Biol. Chem. 2002; 277: 44765-44771https://doi.org/10.1074/jbc.M208704200Abstract Full Text Full Text PDF PubMed Scopus (391) Google Scholar NRF2’s target genes create a network of coordinating enzymes that allow NRF2 to direct a multifaceted response to various types of cellular stress to maintain internal homeostasis and elevate intracellular GSH.54Hayes J.D. Dinkova-Kostova A.T. The Nrf2 regulatory network provides an interface between redox and intermediary metabolism.Trends Biochem. Sci. 2014; 39: 199-218https://doi.org/10.1016/j.tibs.2014.02.002Abstract Full Text Full Text PDF PubMed Scopus (1332) Google Scholar By reducing lipid peroxidation through its target genes, NRF2 acts as a negative regulator of ferroptosis.55Song X. Long D. Nrf2 and ferroptosis: a new research direction for neurodegenerative diseases.Front. Neurosci. 2020; 14: 267https://doi.org/10.3389/fnins.2020.00267Crossref PubMed Scopus (200) Google Scholar,56Forcina G.C. Pope L. Murray M. Dong W. Abu-Remaileh M. Bertozzi C.R. Dixon S.J. Ferroptosis regulation by the NGLY1/NFE2L1 pathway.Proc. Natl. Acad. Sci. USA. 2022; 119 (e2118646119)https://doi.org/10.1073/pnas.2118646119Crossref PubMed Scopus (17) Google Scholar,57Sun X. Ou Z. Chen R. Niu X. Chen D. Kang R. Tang D. Activation of the p62-Keap1-NRF2 pathway protects against ferroptosis in hepatocellular carcinoma cells.Hepatology. 2016; 63: 173-184https://doi.org/10.1002/hep.28251Crossref PubMed Scopus (963) Google Scholar NRF2 is regulated primarily at the protein level by E3 ubiquitin ligases, such as β-TrCP, which mark NRF2 for proteasomal degradation.58Chowdhry S. Zhang Y. McMahon M. Sutherland C. Cuadrado A. Hayes J.D. Nrf2 is controlled by two distinct beta-TrCP recognition motifs in its Neh6 domain, one of which can be modulated by GSK-3 activity.Oncogene. 2013; 32: 3765-3781https://doi.org/10.1038/onc.2012.388Crossref PubMed Scopus (443) Google Scholar,59Rada P. Rojo A.I. Chowdhry S. McMahon M. Hayes J.D. Cuadrado A. SCF/{beta}-TrCP promotes glycogen synthase kinase 3-dependent degradation of the Nrf2 transcription factor in a Keap1-independent manner.Mol. Cell Biol. 2011; 31: 1121-1133https://doi.org/10.1128/MCB.01204-10Crossref PubMed Scopus (549) Google Scholar,60Canning P. Sorrell F.J. Bullock A.N. Structural basis of Keap1 interactions with Nrf2.Free Radic. Biol. Med. 2015; 88: 101-107https://doi.org/10.1016/j.freeradbiomed.2015.05.034Crossref PubMed Scopus (324) Google Scholar,61Itoh K. Wakabayashi N. Katoh Y. Ishii T. Igarashi K. Engel J.D. Yamamoto M. Keap1 represses nuclear activation of antioxidant responsive elements by Nrf2 through binding to the amino-terminal Neh2 domain.Genes Dev. 1999; 13: 76-86https://doi.org/10.1101/gad.13.1.76Crossref PubMed Scopus (2837) Google Scholar,62Liddell J.R. Are astrocytes the predominant cell type for activation of Nrf2 in aging and neurodegeneration?.Antioxidants. 2017; 665https://doi.org/10.3390/antiox6030065Crossref PubMed Scopus (107) Google Scholar AKT activity also regulates NRF2 expression through a GSK3β/β-TrCP axis.49Lien E.C. Lyssiotis C.A. Juvekar A. Hu H. Asara J.M. Cantley L.C. Toker A. Glutathione biosynthesis is a metabolic vulnerability in PI(3)K/Akt-driven breast cancer.Nat. Cell Biol. 2016; 18: 572-578https://doi.org/10.1038/ncb3341Crossref PubMed Scopus (167) Google Scholar,63Cross D.A. Alessi D.R. Cohen P. Andjelkovich M. Hemmings B.A. Inhibition of glycogen synthase kinase-3 by insulin mediated by protein kinase B.Nature. 1995; 378: 785-789https://doi.org/10.1038/378785a0Crossref PubMed Scopus (4402) Google Scholar More specifically, GSK3β phosphorylates NRF2 in the absence of oxidative stress, creating a recognition binding site for β-TrCP.58Chowdhry S. Zhang Y. McMahon M. Sutherland C. Cuadrado A. Hayes J.D. Nrf2 is controlled by two distinct beta-TrCP recognition motifs in its Neh6 domain, one of which can be modulated by GSK-3 activity.Oncogene. 2013; 32: 3765-3781https://doi.org/10.1038/onc.2012.388Crossref PubMed Scopus (443) Google Scholar β-TrCP then binds and mediates ubiquitination of NRF2, marking it for proteasomal degradation.59Rada P. Rojo A.I. Chowdhry S. McMahon M. Hayes J.D. Cuadrado A. SCF/{beta}-TrCP promotes glycogen synthase kinase 3-dependent degradation of the Nrf2 transcription factor in a Keap1-independent manner.Mol. Cell Biol. 2011; 31: 1121-1133https://doi.org/10.1128/MCB.01204-10Crossref PubMed Scopus (549) Google Scholar AKT is known to phosphorylate and deactivate GSK3β, allowing NRF2 to accumulate in the cell by avoiding recognition by β-TrCP.49Lien E.C. Lyssiotis C.A. Juvekar A. Hu H. Asara J.M. Cantley L.C. Toker A. Glutathione biosynthesis is a metabolic vulnerability in PI(3)K/Akt-driven breast cancer.Nat. Cell Biol. 2016; 18: 572-578https://doi.org/10.1038/ncb3341Crossref PubMed Scopus (167) Google Scholar,63Cross D.A. Alessi D.R. Cohen P. Andjelkovich M. Hemmings B.A. Inhibition of glycogen synthase kinase-3 by insulin mediated by protein kinase B.Nature. 1995; 378: 785-789https://doi.org/10.1038/378785a0Crossref PubMed Scopus (4402) Google Scholar This GSK3β-NRF2 axis has also been found to be important in ferroptosis regulation.57Sun X. Ou Z. Chen R. Niu X. Chen D. Kang R. Tang D. Activation of the p62-Keap1-NRF2 pathway protects against ferroptosis in hepatocellular carcinoma cells.Hepatology. 2016; 63: 173-184https://doi.org/10.1002/hep.28251Crossref PubMed Scopus (963) Google Scholar,64Wu X.L. Liu L. Wang Q.C. Wang H.F. Zhao X.R. Lin X.B. Lv W.J. Niu Y.B. Lu T.L. Mei Q.B. Regulation of GSK3beta/Nrf2 signaling pathway modulated erastin-induced ferroptosis in breast cancer.Iran. J. Pharm. Res. (IJPR). 2020; 19: 217-230https://doi.org/10.1007/s11010-020-03821-8Crossref PubMed Scopus (35) Google Scholar Phosphatase and tensin homolog deleted from chromosome 10 (PTEN) is one of the most frequently mutated tumor suppressor genes in cancer.65Lawrence M.S. Stojanov P. Mermel C.H. Robinson J.T. Garraway L.A. Golub T.R. Meyerson M. Gabriel S.B. Lander E.S. Getz G. Discovery and saturation analysis of cancer genes across 21 tumour types.Nature. 2014; 505: 495-501https://doi.org/10.1038/nature12912Crossref PubMed Scopus (2154) Google Scholar,66Li J. Yen C. Liaw D. Podsypanina K. Bose S. Wang S.I. Puc J. Miliaresis C. Rodgers L. McCombie R. et al.PTEN, a putative protein tyrosine phosphatase gene mutated in human brain, breast, and prostate cancer.Science. 1997; 275: 1943-1947https://doi.org/10.1126/science.275.5308.1943Crossref PubMed Scopus (4318) Google Scholar,67Steck P.A. Pershouse M.A. Jasser S.A. Yung W.K. Lin H. Ligon A.H. Langford L.A. Baumgard M.L. Hattier T. Davis T. et al.Identification of a candidate tumour suppressor gene, MMAC1, at chromosome 10q23.3 that is mutated in multiple advanced cancers.Nat. Genet. 1997; 15: 356-362https://doi.org/10.1038/ng0497-356Crossref PubMed Scopus (2529) Google Scholar Aberrant overactivation of PI3K signaling, caused by loss of PTEN, promotes tumorigenesis by enhancing cell cycle progression and reducing apoptosis.68Jimenez C. Jones D.R. Rodríguez-Viciana P. Gonzalez-García A. Leonardo E. Wennström S. von Kobbe C. Toran J.L. R-Borlado L. Calvo V. et al.Identification and characterization of a new oncogene derived from the regulatory subunit of phosphoinositide 3-kinase.EMBO J. 1998; 17: 743-753https://doi.org/10.1093/emboj/17.3.743Crossref PubMed Scopus (239) Google Scholar,69Moscatello D.K. Holgado-Madruga M. Emlet D.R. Montgomery R.B. Wong A.J. Constitutive activation of phosphatidylinositol 3-kinase by a naturally occurring mutant epidermal growth factor receptor.J. Biol. Chem. 1998; 273: 200-206https://doi.org/10.1074/jbc.273.1.200Abstract Full Text Full Text PDF PubMed Scopus (286) Google Scholar,70Philp A.J. Campbell I.G. Leet C. Vincan E. Rockman S.P. Whitehead R.H. Thomas R.J. Phillips W.A. The phosphatidylinositol 3'-kinase p85alpha gene is an oncogene in human ovarian and colon tumors.Cancer Res. 2001; 61: 7426-7429PubMed Google Scholar To carry out its tumor suppressor function, PTEN encodes a lipid phosphatase that dephosphorylates the second messenger phosphatidylinositol-3,4,5-trisphosphate (PIP3) to inhibit the PI3K pathway and its downstream effectors, such as AKT and mTOR.71Vivanco I. Sawyers C.L. The phosphatidylinositol 3-Kinase AKT pathway in human cancer.Nat. Rev. Cancer. 2002; 2: 489-501https://doi.org/10.1038/nrc839Crossref PubMed Scopus (5175) Google Scholar,72Podsypanina K. Lee R.T. Politis C. Hennessy I. Crane A. Puc J. Neshat M. Wang H. Yang L. Gibbons J. et al.An inhibitor of mTOR reduces neoplasia and normalizes p70/S6 kinase activity in Pten+/- mice.Proc. Natl. Acad. Sci. USA. 2001; 98: 10320-10325https://doi.org/10.1073/pnas.171060098Crossref PubMed Scopus (566) Google Scholar PTEN has been found to elicit GSK3β-mediated phosphorylation of NRF2 via inactivation of AKT, leading to subsequent β-TrCP-mediated NRF2 degradation.73Rojo A.I. Rada P. Mendiola M. Ortega-Molina A. Wojdyla K. Rogowska-Wrzesinska A. Hardisson D. Serrano M. Cuadrado A. The PTEN/NRF2 axis promotes human ca" @default.
- W4377157427 created "2023-05-21" @default.
- W4377157427 creator A5006833308 @default.
- W4377157427 creator A5019633253 @default.
- W4377157427 creator A5020550777 @default.
- W4377157427 creator A5031180966 @default.
- W4377157427 creator A5041241925 @default.
- W4377157427 creator A5074720203 @default.
- W4377157427 creator A5082690187 @default.
- W4377157427 creator A5086077549 @default.
- W4377157427 creator A5091985346 @default.
- W4377157427 date "2023-05-01" @default.
- W4377157427 modified "2023-10-08" @default.
- W4377157427 title "AKT activation because of PTEN loss upregulates xCT via GSK3β/NRF2, leading to inhibition of ferroptosis in PTEN-mutant tumor cells" @default.
- W4377157427 cites W157902027 @default.
- W4377157427 cites W1589007430 @default.
- W4377157427 cites W1607777232 @default.
- W4377157427 cites W1829723692 @default.
- W4377157427 cites W1964296201 @default.
- W4377157427 cites W1966824235 @default.
- W4377157427 cites W1973260880 @default.
- W4377157427 cites W1975617209 @default.
- W4377157427 cites W1980195461 @default.
- W4377157427 cites W1980792888 @default.
- W4377157427 cites W1984053258 @default.
- W4377157427 cites W1988609792 @default.
- W4377157427 cites W1991039871 @default.
- W4377157427 cites W1995630168 @default.
- W4377157427 cites W1997183854 @default.
- W4377157427 cites W1998038367 @default.
- W4377157427 cites W2001591494 @default.
- W4377157427 cites W2002490399 @default.
- W4377157427 cites W2003295985 @default.
- W4377157427 cites W2006958922 @default.
- W4377157427 cites W2007794772 @default.
- W4377157427 cites W2009966467 @default.
- W4377157427 cites W2011223596 @default.
- W4377157427 cites W2015360869 @default.
- W4377157427 cites W2018593601 @default.
- W4377157427 cites W2031211461 @default.
- W4377157427 cites W2032299952 @default.
- W4377157427 cites W2035676834 @default.
- W4377157427 cites W2035898183 @default.
- W4377157427 cites W2038612772 @default.
- W4377157427 cites W2041399911 @default.
- W4377157427 cites W2053387982 @default.
- W4377157427 cites W2057632732 @default.
- W4377157427 cites W2058138221 @default.
- W4377157427 cites W2066639890 @default.
- W4377157427 cites W2067107606 @default.
- W4377157427 cites W2068345721 @default.
- W4377157427 cites W2070634275 @default.
- W4377157427 cites W2071463092 @default.
- W4377157427 cites W2074892323 @default.
- W4377157427 cites W2079162384 @default.
- W4377157427 cites W2081053802 @default.
- W4377157427 cites W2095541301 @default.
- W4377157427 cites W2099540110 @default.
- W4377157427 cites W2099546337 @default.
- W4377157427 cites W2114031931 @default.
- W4377157427 cites W2114138419 @default.
- W4377157427 cites W2114843025 @default.
- W4377157427 cites W2115235864 @default.
- W4377157427 cites W2115338196 @default.
- W4377157427 cites W2118394016 @default.
- W4377157427 cites W2145202221 @default.
- W4377157427 cites W2149441684 @default.
- W4377157427 cites W2151350796 @default.
- W4377157427 cites W2158738251 @default.
- W4377157427 cites W2161810908 @default.
- W4377157427 cites W2163005196 @default.
- W4377157427 cites W2164788576 @default.
- W4377157427 cites W2297502991 @default.
- W4377157427 cites W2327775625 @default.
- W4377157427 cites W2336310263 @default.
- W4377157427 cites W2388163742 @default.
- W4377157427 cites W2554956457 @default.
- W4377157427 cites W2590621600 @default.
- W4377157427 cites W2613165131 @default.
- W4377157427 cites W2613174768 @default.
- W4377157427 cites W2617266043 @default.
- W4377157427 cites W2690859775 @default.
- W4377157427 cites W2727828415 @default.
- W4377157427 cites W2748930167 @default.
- W4377157427 cites W2767876404 @default.
- W4377157427 cites W2778665250 @default.
- W4377157427 cites W2788640168 @default.
- W4377157427 cites W2809515751 @default.
- W4377157427 cites W2890597423 @default.
- W4377157427 cites W2906319220 @default.
- W4377157427 cites W2911633561 @default.
- W4377157427 cites W2912580313 @default.
- W4377157427 cites W2913399313 @default.
- W4377157427 cites W2914574872 @default.
- W4377157427 cites W2920670758 @default.
- W4377157427 cites W2925205243 @default.
- W4377157427 cites W2939427895 @default.
- W4377157427 cites W2940348880 @default.