Matches in SemOpenAlex for { <https://semopenalex.org/work/W4377233089> ?p ?o ?g. }
Showing items 1 to 100 of
100
with 100 items per page.
- W4377233089 abstract "Abstract The most common approach to characterize neuropathology in Alzheimer’s disease (AD) involves a manual survey and inspection by an expert neuropathologist of postmortem tissue that has been immunolabeled to visualize the presence of amyloid β in plaques and around blood vessels and neurofibrillary tangles of the tau protein. In the case of amyloid β pathology, a semiquantitative score is given that is based on areas of densest pathology. The approach has been well-validated but the process is laborious and time consuming, and inherently susceptible to intra- and inter-observer variability. Moreover, the tremendous growth in genetic, transcriptomic and proteomic data from AD patients has created new opportunities to link clinical features of AD to molecular pathogenesis through pathology, but the lack of high throughput quantitative and comprehensive approaches to assess neuropathology limits the associations that can be discovered. To address these limitations, we designed a computational pipeline to analyze postmortem tissue from AD patients in a fully automated, unbiased and high throughput manner. We used deep learning to train algorithms with a Mask Regional-Convolutional Neural Network to detect and classify different types of amyloid pathology with human level accuracy. After training on pathology slides from a Mt Sinai cohort, our algorithms identified amyloid pathology in samples made at an independent brain bank and from an unrelated cohort of patients, indicating that the algorithms were detecting reproducible and generalizable pathology features. We designed the pipeline to retain the position of the pathology it detects, making it possible to reconstruct a map of pathology across the entire whole slide image, facilitating neuropathological analyses at multiple scales. Quantitative measurements of amyloid pathology correlated positively and significantly with the severity of AD as measured by standard approaches. We conclude that we have developed a computational pipeline to analyze digitized images of neuropathology in high throughput and algorithms to detect types of amyloid pathology with human level accuracy that should enable neuropathological analysis of large tissue collections and integration of those results with orthogonal clinical and multiomic measurements." @default.
- W4377233089 created "2023-05-23" @default.
- W4377233089 creator A5014680158 @default.
- W4377233089 creator A5018939178 @default.
- W4377233089 creator A5020685721 @default.
- W4377233089 creator A5054102651 @default.
- W4377233089 creator A5054795331 @default.
- W4377233089 creator A5060714554 @default.
- W4377233089 date "2023-05-22" @default.
- W4377233089 modified "2023-09-26" @default.
- W4377233089 title "A Scalable High Throughput Fully Automated Pipeline for the Quantification of Amyloid Pathology in Alzheimer’s Disease using Deep Learning Algorithms" @default.
- W4377233089 cites W2011477142 @default.
- W4377233089 cites W204109909 @default.
- W4377233089 cites W2052742260 @default.
- W4377233089 cites W2070448139 @default.
- W4377233089 cites W2093650784 @default.
- W4377233089 cites W2096963202 @default.
- W4377233089 cites W2098048098 @default.
- W4377233089 cites W2103440561 @default.
- W4377233089 cites W2118760854 @default.
- W4377233089 cites W2146729934 @default.
- W4377233089 cites W2185267010 @default.
- W4377233089 cites W2329336071 @default.
- W4377233089 cites W2566006671 @default.
- W4377233089 cites W2580612265 @default.
- W4377233089 cites W2612624696 @default.
- W4377233089 cites W2732701910 @default.
- W4377233089 cites W2746251217 @default.
- W4377233089 cites W2760444503 @default.
- W4377233089 cites W2790798430 @default.
- W4377233089 cites W2884933563 @default.
- W4377233089 cites W2888662179 @default.
- W4377233089 cites W2898477488 @default.
- W4377233089 cites W2952481429 @default.
- W4377233089 cites W2965717703 @default.
- W4377233089 cites W2981624110 @default.
- W4377233089 cites W2983688784 @default.
- W4377233089 cites W2989881255 @default.
- W4377233089 cites W3010219363 @default.
- W4377233089 cites W3022707652 @default.
- W4377233089 cites W3036094175 @default.
- W4377233089 cites W3085066201 @default.
- W4377233089 cites W3128351807 @default.
- W4377233089 cites W4206782338 @default.
- W4377233089 cites W4223591189 @default.
- W4377233089 cites W4225324714 @default.
- W4377233089 cites W4238843899 @default.
- W4377233089 cites W4317401758 @default.
- W4377233089 cites W4323809088 @default.
- W4377233089 cites W75595609 @default.
- W4377233089 doi "https://doi.org/10.1101/2023.05.19.541376" @default.
- W4377233089 hasPublicationYear "2023" @default.
- W4377233089 type Work @default.
- W4377233089 citedByCount "0" @default.
- W4377233089 crossrefType "posted-content" @default.
- W4377233089 hasAuthorship W4377233089A5014680158 @default.
- W4377233089 hasAuthorship W4377233089A5018939178 @default.
- W4377233089 hasAuthorship W4377233089A5020685721 @default.
- W4377233089 hasAuthorship W4377233089A5054102651 @default.
- W4377233089 hasAuthorship W4377233089A5054795331 @default.
- W4377233089 hasAuthorship W4377233089A5060714554 @default.
- W4377233089 hasBestOaLocation W43772330891 @default.
- W4377233089 hasConcept C108583219 @default.
- W4377233089 hasConcept C142724271 @default.
- W4377233089 hasConcept C154945302 @default.
- W4377233089 hasConcept C199360897 @default.
- W4377233089 hasConcept C2777522853 @default.
- W4377233089 hasConcept C2779134260 @default.
- W4377233089 hasConcept C2780130745 @default.
- W4377233089 hasConcept C41008148 @default.
- W4377233089 hasConcept C43521106 @default.
- W4377233089 hasConcept C71924100 @default.
- W4377233089 hasConcept C81363708 @default.
- W4377233089 hasConceptScore W4377233089C108583219 @default.
- W4377233089 hasConceptScore W4377233089C142724271 @default.
- W4377233089 hasConceptScore W4377233089C154945302 @default.
- W4377233089 hasConceptScore W4377233089C199360897 @default.
- W4377233089 hasConceptScore W4377233089C2777522853 @default.
- W4377233089 hasConceptScore W4377233089C2779134260 @default.
- W4377233089 hasConceptScore W4377233089C2780130745 @default.
- W4377233089 hasConceptScore W4377233089C41008148 @default.
- W4377233089 hasConceptScore W4377233089C43521106 @default.
- W4377233089 hasConceptScore W4377233089C71924100 @default.
- W4377233089 hasConceptScore W4377233089C81363708 @default.
- W4377233089 hasLocation W43772330891 @default.
- W4377233089 hasOpenAccess W4377233089 @default.
- W4377233089 hasPrimaryLocation W43772330891 @default.
- W4377233089 hasRelatedWork W2731899572 @default.
- W4377233089 hasRelatedWork W2999805992 @default.
- W4377233089 hasRelatedWork W3011074480 @default.
- W4377233089 hasRelatedWork W3116150086 @default.
- W4377233089 hasRelatedWork W3133861977 @default.
- W4377233089 hasRelatedWork W4200173597 @default.
- W4377233089 hasRelatedWork W4291897433 @default.
- W4377233089 hasRelatedWork W4307635210 @default.
- W4377233089 hasRelatedWork W4312417841 @default.
- W4377233089 hasRelatedWork W4321369474 @default.
- W4377233089 isParatext "false" @default.
- W4377233089 isRetracted "false" @default.
- W4377233089 workType "article" @default.