Matches in SemOpenAlex for { <https://semopenalex.org/work/W4377236543> ?p ?o ?g. }
Showing items 1 to 69 of
69
with 100 items per page.
- W4377236543 abstract "Thoracic radiography (chest X-beam) is a modest yet compelling and broadly utilized clinical imaging method to recognize threatening development, infection, or air gathering inside the space around a lung. Regardless, a deficiency of qualified radiologists truly confines the suitability of the strategy. Without a doubt, even current Profound Learning - based systems as often as possible require solid organization, e.g., explained deflecting boxes, to plan such constructions, which is inconvenient to accumulate for a huge expansion. We proposed the portrayal and assumption for lung pathologies of front-facing thoracic X-beams utilizing a changed model Portable Net V2. We considered using move learning with metadata influence and furthermore the NIH Chest-X beam 14 informational collections, and those we did a relationship of execution of our way to deal with other best-in class strategies for pathology course of action. During this endeavor, we intended to shape a model that is fit for location of COVID - 19 by observing lung pollution, temperature and oxygen drenching of the blood and accordingly the pulse utilizing sensors with a connection point to Raspberry Pi [3]. The proposed structure moreover, collaborated with human wellbeing to constantly screen patient temperature and oxygen level through Internet of Things (IoT)." @default.
- W4377236543 created "2023-05-23" @default.
- W4377236543 creator A5022352333 @default.
- W4377236543 creator A5029335017 @default.
- W4377236543 creator A5035812067 @default.
- W4377236543 creator A5074699614 @default.
- W4377236543 creator A5089858106 @default.
- W4377236543 date "2022-11-01" @default.
- W4377236543 modified "2023-09-27" @default.
- W4377236543 title "IoT Based Efficient Detection of Covid-19 Using Deep Learning Algorithms" @default.
- W4377236543 cites W1986649315 @default.
- W4377236543 cites W2782169620 @default.
- W4377236543 cites W2887468681 @default.
- W4377236543 cites W2903664019 @default.
- W4377236543 cites W2904504222 @default.
- W4377236543 cites W2956897601 @default.
- W4377236543 cites W2971697670 @default.
- W4377236543 cites W3010223921 @default.
- W4377236543 cites W3026931681 @default.
- W4377236543 doi "https://doi.org/10.1109/ssteps57475.2022.00035" @default.
- W4377236543 hasPublicationYear "2022" @default.
- W4377236543 type Work @default.
- W4377236543 citedByCount "0" @default.
- W4377236543 crossrefType "proceedings-article" @default.
- W4377236543 hasAuthorship W4377236543A5022352333 @default.
- W4377236543 hasAuthorship W4377236543A5029335017 @default.
- W4377236543 hasAuthorship W4377236543A5035812067 @default.
- W4377236543 hasAuthorship W4377236543A5074699614 @default.
- W4377236543 hasAuthorship W4377236543A5089858106 @default.
- W4377236543 hasConcept C11413529 @default.
- W4377236543 hasConcept C119857082 @default.
- W4377236543 hasConcept C136764020 @default.
- W4377236543 hasConcept C142724271 @default.
- W4377236543 hasConcept C154945302 @default.
- W4377236543 hasConcept C2779134260 @default.
- W4377236543 hasConcept C3008058167 @default.
- W4377236543 hasConcept C41008148 @default.
- W4377236543 hasConcept C524204448 @default.
- W4377236543 hasConcept C71924100 @default.
- W4377236543 hasConcept C81860439 @default.
- W4377236543 hasConcept C93518851 @default.
- W4377236543 hasConceptScore W4377236543C11413529 @default.
- W4377236543 hasConceptScore W4377236543C119857082 @default.
- W4377236543 hasConceptScore W4377236543C136764020 @default.
- W4377236543 hasConceptScore W4377236543C142724271 @default.
- W4377236543 hasConceptScore W4377236543C154945302 @default.
- W4377236543 hasConceptScore W4377236543C2779134260 @default.
- W4377236543 hasConceptScore W4377236543C3008058167 @default.
- W4377236543 hasConceptScore W4377236543C41008148 @default.
- W4377236543 hasConceptScore W4377236543C524204448 @default.
- W4377236543 hasConceptScore W4377236543C71924100 @default.
- W4377236543 hasConceptScore W4377236543C81860439 @default.
- W4377236543 hasConceptScore W4377236543C93518851 @default.
- W4377236543 hasLocation W43772365431 @default.
- W4377236543 hasOpenAccess W4377236543 @default.
- W4377236543 hasPrimaryLocation W43772365431 @default.
- W4377236543 hasRelatedWork W1992807924 @default.
- W4377236543 hasRelatedWork W2062427795 @default.
- W4377236543 hasRelatedWork W2324261804 @default.
- W4377236543 hasRelatedWork W2354642172 @default.
- W4377236543 hasRelatedWork W2360553097 @default.
- W4377236543 hasRelatedWork W2361349944 @default.
- W4377236543 hasRelatedWork W2381351160 @default.
- W4377236543 hasRelatedWork W2914587905 @default.
- W4377236543 hasRelatedWork W4225307033 @default.
- W4377236543 hasRelatedWork W1533329019 @default.
- W4377236543 isParatext "false" @default.
- W4377236543 isRetracted "false" @default.
- W4377236543 workType "article" @default.