Matches in SemOpenAlex for { <https://semopenalex.org/work/W4377236648> ?p ?o ?g. }
Showing items 1 to 90 of
90
with 100 items per page.
- W4377236648 abstract "The “deep learning model + CRF” model architecture such as Bi-LSTM-CRF has outstanding performance| in the tasks of part-of-speech tagging, named entity recognition, and semantic role tagging in the field of natural language processing, and has become the most popular algorithm for sequence tagging tasks. However, in practical applications, due to the strong fitting ability of the feature extractor in the deep learning model, the use efficiency of the CRF layer is relatively low; at the same time, the calculation cost of the CRF layer is relatively large. This paper proposes a performance optimization algorithm for the CRF layer in the sequence annotation task based on the deep learning model. The algorithm introduces five rules. First of all, the tag result of the feature extractor is checked by the five rules, if the adjacent tag is found to be logically incorrect, then use the CRF layer for logic correction. The experimental results show that the algorithm shows great advantages in the process of word segmentation, part-of-speech tagging and named entity recognition, a lot of computing time has been saved." @default.
- W4377236648 created "2023-05-23" @default.
- W4377236648 creator A5008293912 @default.
- W4377236648 creator A5021583515 @default.
- W4377236648 creator A5022143419 @default.
- W4377236648 creator A5062646818 @default.
- W4377236648 date "2022-10-01" @default.
- W4377236648 modified "2023-09-29" @default.
- W4377236648 title "Performance optimization algorithm for CRF layer of Chinese sequence labeling model based on deep learning" @default.
- W4377236648 cites W1899794420 @default.
- W4377236648 cites W2296283641 @default.
- W4377236648 doi "https://doi.org/10.1109/mlbdbi58171.2022.00061" @default.
- W4377236648 hasPublicationYear "2022" @default.
- W4377236648 type Work @default.
- W4377236648 citedByCount "0" @default.
- W4377236648 crossrefType "proceedings-article" @default.
- W4377236648 hasAuthorship W4377236648A5008293912 @default.
- W4377236648 hasAuthorship W4377236648A5021583515 @default.
- W4377236648 hasAuthorship W4377236648A5022143419 @default.
- W4377236648 hasAuthorship W4377236648A5062646818 @default.
- W4377236648 hasConcept C108583219 @default.
- W4377236648 hasConcept C111919701 @default.
- W4377236648 hasConcept C11413529 @default.
- W4377236648 hasConcept C117978034 @default.
- W4377236648 hasConcept C119857082 @default.
- W4377236648 hasConcept C127413603 @default.
- W4377236648 hasConcept C138885662 @default.
- W4377236648 hasConcept C152565575 @default.
- W4377236648 hasConcept C153180895 @default.
- W4377236648 hasConcept C154945302 @default.
- W4377236648 hasConcept C162324750 @default.
- W4377236648 hasConcept C178790620 @default.
- W4377236648 hasConcept C185592680 @default.
- W4377236648 hasConcept C187736073 @default.
- W4377236648 hasConcept C204321447 @default.
- W4377236648 hasConcept C21880701 @default.
- W4377236648 hasConcept C2776401178 @default.
- W4377236648 hasConcept C2778112365 @default.
- W4377236648 hasConcept C2779135771 @default.
- W4377236648 hasConcept C2779227376 @default.
- W4377236648 hasConcept C2780451532 @default.
- W4377236648 hasConcept C35639132 @default.
- W4377236648 hasConcept C41008148 @default.
- W4377236648 hasConcept C41895202 @default.
- W4377236648 hasConcept C54355233 @default.
- W4377236648 hasConcept C86803240 @default.
- W4377236648 hasConcept C98045186 @default.
- W4377236648 hasConceptScore W4377236648C108583219 @default.
- W4377236648 hasConceptScore W4377236648C111919701 @default.
- W4377236648 hasConceptScore W4377236648C11413529 @default.
- W4377236648 hasConceptScore W4377236648C117978034 @default.
- W4377236648 hasConceptScore W4377236648C119857082 @default.
- W4377236648 hasConceptScore W4377236648C127413603 @default.
- W4377236648 hasConceptScore W4377236648C138885662 @default.
- W4377236648 hasConceptScore W4377236648C152565575 @default.
- W4377236648 hasConceptScore W4377236648C153180895 @default.
- W4377236648 hasConceptScore W4377236648C154945302 @default.
- W4377236648 hasConceptScore W4377236648C162324750 @default.
- W4377236648 hasConceptScore W4377236648C178790620 @default.
- W4377236648 hasConceptScore W4377236648C185592680 @default.
- W4377236648 hasConceptScore W4377236648C187736073 @default.
- W4377236648 hasConceptScore W4377236648C204321447 @default.
- W4377236648 hasConceptScore W4377236648C21880701 @default.
- W4377236648 hasConceptScore W4377236648C2776401178 @default.
- W4377236648 hasConceptScore W4377236648C2778112365 @default.
- W4377236648 hasConceptScore W4377236648C2779135771 @default.
- W4377236648 hasConceptScore W4377236648C2779227376 @default.
- W4377236648 hasConceptScore W4377236648C2780451532 @default.
- W4377236648 hasConceptScore W4377236648C35639132 @default.
- W4377236648 hasConceptScore W4377236648C41008148 @default.
- W4377236648 hasConceptScore W4377236648C41895202 @default.
- W4377236648 hasConceptScore W4377236648C54355233 @default.
- W4377236648 hasConceptScore W4377236648C86803240 @default.
- W4377236648 hasConceptScore W4377236648C98045186 @default.
- W4377236648 hasLocation W43772366481 @default.
- W4377236648 hasOpenAccess W4377236648 @default.
- W4377236648 hasPrimaryLocation W43772366481 @default.
- W4377236648 hasRelatedWork W2078793151 @default.
- W4377236648 hasRelatedWork W2590599429 @default.
- W4377236648 hasRelatedWork W2787045460 @default.
- W4377236648 hasRelatedWork W2899863948 @default.
- W4377236648 hasRelatedWork W2947903144 @default.
- W4377236648 hasRelatedWork W3004047707 @default.
- W4377236648 hasRelatedWork W3015207881 @default.
- W4377236648 hasRelatedWork W3023910524 @default.
- W4377236648 hasRelatedWork W4288762748 @default.
- W4377236648 hasRelatedWork W4297192989 @default.
- W4377236648 isParatext "false" @default.
- W4377236648 isRetracted "false" @default.
- W4377236648 workType "article" @default.