Matches in SemOpenAlex for { <https://semopenalex.org/work/W4377262008> ?p ?o ?g. }
Showing items 1 to 81 of
81
with 100 items per page.
- W4377262008 endingPage "e180" @default.
- W4377262008 startingPage "e179" @default.
- W4377262008 abstract "Open surgical treatment options for aortoiliac occlusive disease carry significant perioperative risks; however, outcome prediction tools remain limited. Using machine learning (ML), we developed automated algorithms that predict 30-day outcomes following open aortoiliac revascularization. In this multicenter retrospective cohort study, the American College of Surgeons (ACS) National Surgical Quality Improvement Program (NSQIP) targeted database was used to identify patients who underwent open aortoiliac revascularization for atherosclerotic disease between 2011 and 2021. Patients treated for aneurysmal disease, acute limb ischemia, trauma, dissection, or malignancy were excluded. Input features included 38 preoperative demographic/clinical variables. The primary outcome was 30-day major adverse limb event (MALE; composite of untreated loss of patency, major reintervention, or major amputation) or death. The 30-day secondary outcomes were individual components of the primary outcome, major adverse cardiovascular event, wound complication, bleeding, other morbidity, non-home discharge, and unplanned readmission. Our data were split into training (70%) and test (30%) sets. Using 10-fold cross-validation, we trained 6 ML models using preoperative features. The primary model evaluation metric was area under the receiver operating characteristic curve (AUROC). Model robustness was evaluated with calibration plot and Brier score. Variable importance scores were calculated to determine the top 10 predictive features. Performance was assessed on subgroups based on age, sex, race, ethnicity, symptom status, procedure type, and urgency. Overall, 9649 patients were included. Thirty-day MALE or death occurred in 1021 patients (10.6%). Those with a primary outcome were older with more comorbidities, had poorer functional status, and were more likely to have high-risk physiologic and anatomic features, yet a lower proportion were on antiplatelets/statins. Our best performing prediction model for 30-day MALE or death was XGBoost, achieving an AUROC of 0.95 (95% confidence interval [CI], 0.94-0.96) (Fig 1). In comparison, logistic regression had an AUROC of 0.79 (95% CI, 0.77-0.81). For 30-day secondary outcomes, XGBoost achieved AUROCs between 0.87 and0.97. The calibration plot showed good agreement between predicted and observed event probabilities with a Brier score of 0.05 (Fig 2). The strongest predictive feature in our algorithm was symptom status (chronic limb-threatening ischemia). Model performance remained robust on all subgroup analyses of specific demographic and clinical populations. Our ML models accurately predict 30-day outcomes following open aortoiliac revascularization using preoperative data, performing better than logistic regression. They have potential for important utility in guiding risk mitigation strategies for patients being considered for open aortoiliac revascularization to improve outcomes and reduce costs.Fig 2Calibration plot with Brier score for predicting 30-day major adverse limb event (MALE) or death following open aortoiliac revascularization using Extreme Gradient Boosting (XGBoost) model.View Large Image Figure ViewerDownload Hi-res image Download (PPT)" @default.
- W4377262008 created "2023-05-23" @default.
- W4377262008 creator A5000682755 @default.
- W4377262008 creator A5004947320 @default.
- W4377262008 creator A5005196213 @default.
- W4377262008 creator A5007511339 @default.
- W4377262008 creator A5012004173 @default.
- W4377262008 creator A5020510561 @default.
- W4377262008 creator A5021289101 @default.
- W4377262008 creator A5031529611 @default.
- W4377262008 creator A5054561346 @default.
- W4377262008 creator A5065468510 @default.
- W4377262008 creator A5069247076 @default.
- W4377262008 date "2023-06-01" @default.
- W4377262008 modified "2023-10-18" @default.
- W4377262008 title "Predicting Outcomes Following Open Aortoiliac Revascularization Using Machine Learning" @default.
- W4377262008 doi "https://doi.org/10.1016/j.jvs.2023.03.248" @default.
- W4377262008 hasPublicationYear "2023" @default.
- W4377262008 type Work @default.
- W4377262008 citedByCount "0" @default.
- W4377262008 crossrefType "journal-article" @default.
- W4377262008 hasAuthorship W4377262008A5000682755 @default.
- W4377262008 hasAuthorship W4377262008A5004947320 @default.
- W4377262008 hasAuthorship W4377262008A5005196213 @default.
- W4377262008 hasAuthorship W4377262008A5007511339 @default.
- W4377262008 hasAuthorship W4377262008A5012004173 @default.
- W4377262008 hasAuthorship W4377262008A5020510561 @default.
- W4377262008 hasAuthorship W4377262008A5021289101 @default.
- W4377262008 hasAuthorship W4377262008A5031529611 @default.
- W4377262008 hasAuthorship W4377262008A5054561346 @default.
- W4377262008 hasAuthorship W4377262008A5065468510 @default.
- W4377262008 hasAuthorship W4377262008A5069247076 @default.
- W4377262008 hasBestOaLocation W43772620081 @default.
- W4377262008 hasConcept C119857082 @default.
- W4377262008 hasConcept C126322002 @default.
- W4377262008 hasConcept C141071460 @default.
- W4377262008 hasConcept C167135981 @default.
- W4377262008 hasConcept C197934379 @default.
- W4377262008 hasConcept C2778750487 @default.
- W4377262008 hasConcept C2779464278 @default.
- W4377262008 hasConcept C31174226 @default.
- W4377262008 hasConcept C35405484 @default.
- W4377262008 hasConcept C41008148 @default.
- W4377262008 hasConcept C500558357 @default.
- W4377262008 hasConcept C58471807 @default.
- W4377262008 hasConcept C71924100 @default.
- W4377262008 hasConcept C72563966 @default.
- W4377262008 hasConceptScore W4377262008C119857082 @default.
- W4377262008 hasConceptScore W4377262008C126322002 @default.
- W4377262008 hasConceptScore W4377262008C141071460 @default.
- W4377262008 hasConceptScore W4377262008C167135981 @default.
- W4377262008 hasConceptScore W4377262008C197934379 @default.
- W4377262008 hasConceptScore W4377262008C2778750487 @default.
- W4377262008 hasConceptScore W4377262008C2779464278 @default.
- W4377262008 hasConceptScore W4377262008C31174226 @default.
- W4377262008 hasConceptScore W4377262008C35405484 @default.
- W4377262008 hasConceptScore W4377262008C41008148 @default.
- W4377262008 hasConceptScore W4377262008C500558357 @default.
- W4377262008 hasConceptScore W4377262008C58471807 @default.
- W4377262008 hasConceptScore W4377262008C71924100 @default.
- W4377262008 hasConceptScore W4377262008C72563966 @default.
- W4377262008 hasIssue "6" @default.
- W4377262008 hasLocation W43772620081 @default.
- W4377262008 hasOpenAccess W4377262008 @default.
- W4377262008 hasPrimaryLocation W43772620081 @default.
- W4377262008 hasRelatedWork W2013968168 @default.
- W4377262008 hasRelatedWork W2354785620 @default.
- W4377262008 hasRelatedWork W2586998360 @default.
- W4377262008 hasRelatedWork W2767618185 @default.
- W4377262008 hasRelatedWork W3084158570 @default.
- W4377262008 hasRelatedWork W3118515085 @default.
- W4377262008 hasRelatedWork W3171994353 @default.
- W4377262008 hasRelatedWork W4377262008 @default.
- W4377262008 hasRelatedWork W4384297436 @default.
- W4377262008 hasRelatedWork W3006168697 @default.
- W4377262008 hasVolume "77" @default.
- W4377262008 isParatext "false" @default.
- W4377262008 isRetracted "false" @default.
- W4377262008 workType "article" @default.