Matches in SemOpenAlex for { <https://semopenalex.org/work/W4377286932> ?p ?o ?g. }
- W4377286932 endingPage "4215" @default.
- W4377286932 startingPage "4215" @default.
- W4377286932 abstract "The purpose of this review paper is to show the possibilities of carbonate reservoir characterization using well logging and laboratory measurements. Attention was focused on standard and new methods of well logging acquisition and interpretation including laboratory experiments to show a part of the history of carbonate rock investigations as hydrocarbon or water reservoirs. Brief information on the geology, mineralogy and petrography of carbonate rocks was delivered. Reservoir properties, i.e., porosity (including fracturing), permeability, and saturation, were defined to emphasize the specific features of carbonates, such as fractures, and vugs. Examples of methodologies were selected from the commonly used laboratory techniques (thin sections examination, mercury and helium porosimetry, X-ray diffraction—XRD) combined with the standard well logs (bulk density—RHOB, neutron porosity—NPHI, sonic slowness—DT, and deep resistivity—Rd) to show the methods that have been used since the very beginning of the scientific and engineering studies of carbonates. Novelty in well logging, i.e., resistivity and acoustic imaging, nuclear magnetic resonance–NMR, dipole shear sonic imaging–DSI, and a spectral neutron-gamma log-geochemical device–GLT combined with modern laboratory investigations (NMR laboratory experiments, scanning electron microscopy SEM), showed how continuous information on mineral composition, porosity and saturation could be obtained and juxtaposed with very detailed laboratory data. Computed X-ray tomography (CT) enabling the 2D and 3D analyses of pores and fractures was presented as a quantitative methodology, effective in pore space characterization, revealing rock filtration abilities. Deep learning and artificial intelligence were used for joining various types of data. It was shown that thanks to new computational technologies original data from very small samples (micro scale), extensively describing the flow ability of the reservoir, could be extended to mezzo scale (core samples) and macro scale (well log images). Selected examples from the published papers illustrated the review. References cited in the text, together with the issues included in them, were the rich source of the practical knowledge processed These were checked by the authors and could be used in other projects." @default.
- W4377286932 created "2023-05-23" @default.
- W4377286932 creator A5044725168 @default.
- W4377286932 creator A5056265756 @default.
- W4377286932 date "2023-05-20" @default.
- W4377286932 modified "2023-09-30" @default.
- W4377286932 title "Estimation of Petrophysical Parameters of Carbonates Based on Well Logs and Laboratory Measurements, a Review" @default.
- W4377286932 cites W1527871235 @default.
- W4377286932 cites W1566448103 @default.
- W4377286932 cites W1570834090 @default.
- W4377286932 cites W1875949197 @default.
- W4377286932 cites W1964836883 @default.
- W4377286932 cites W1976810927 @default.
- W4377286932 cites W1978878626 @default.
- W4377286932 cites W1986617836 @default.
- W4377286932 cites W2008778160 @default.
- W4377286932 cites W2008903248 @default.
- W4377286932 cites W2011714856 @default.
- W4377286932 cites W2012933510 @default.
- W4377286932 cites W2024672594 @default.
- W4377286932 cites W2026014877 @default.
- W4377286932 cites W2031490402 @default.
- W4377286932 cites W2031924106 @default.
- W4377286932 cites W2034063916 @default.
- W4377286932 cites W2036163770 @default.
- W4377286932 cites W2043315469 @default.
- W4377286932 cites W2045222627 @default.
- W4377286932 cites W2074175145 @default.
- W4377286932 cites W2075082450 @default.
- W4377286932 cites W2076098565 @default.
- W4377286932 cites W2087404271 @default.
- W4377286932 cites W2095617954 @default.
- W4377286932 cites W2103778493 @default.
- W4377286932 cites W2108986389 @default.
- W4377286932 cites W2117688670 @default.
- W4377286932 cites W2156520789 @default.
- W4377286932 cites W2170995602 @default.
- W4377286932 cites W2171304329 @default.
- W4377286932 cites W2316266578 @default.
- W4377286932 cites W2337382035 @default.
- W4377286932 cites W2350343977 @default.
- W4377286932 cites W237207965 @default.
- W4377286932 cites W2492428884 @default.
- W4377286932 cites W2599137200 @default.
- W4377286932 cites W2762600492 @default.
- W4377286932 cites W2767791651 @default.
- W4377286932 cites W2810350385 @default.
- W4377286932 cites W3030447487 @default.
- W4377286932 cites W3090681601 @default.
- W4377286932 cites W3113179289 @default.
- W4377286932 cites W3128485889 @default.
- W4377286932 cites W3132591699 @default.
- W4377286932 cites W3201979586 @default.
- W4377286932 cites W4205454092 @default.
- W4377286932 cites W4211007335 @default.
- W4377286932 cites W4220984761 @default.
- W4377286932 cites W4239840566 @default.
- W4377286932 cites W4250721752 @default.
- W4377286932 cites W4283729949 @default.
- W4377286932 cites W4284896245 @default.
- W4377286932 cites W4298007541 @default.
- W4377286932 cites W4318211830 @default.
- W4377286932 cites W53227058 @default.
- W4377286932 cites W2973081453 @default.
- W4377286932 doi "https://doi.org/10.3390/en16104215" @default.
- W4377286932 hasPublicationYear "2023" @default.
- W4377286932 type Work @default.
- W4377286932 citedByCount "0" @default.
- W4377286932 crossrefType "journal-article" @default.
- W4377286932 hasAuthorship W4377286932A5044725168 @default.
- W4377286932 hasAuthorship W4377286932A5056265756 @default.
- W4377286932 hasBestOaLocation W43772869321 @default.
- W4377286932 hasConcept C105569014 @default.
- W4377286932 hasConcept C114873805 @default.
- W4377286932 hasConcept C127313418 @default.
- W4377286932 hasConcept C14641988 @default.
- W4377286932 hasConcept C17409809 @default.
- W4377286932 hasConcept C187320778 @default.
- W4377286932 hasConcept C191897082 @default.
- W4377286932 hasConcept C192562407 @default.
- W4377286932 hasConcept C19320362 @default.
- W4377286932 hasConcept C199289684 @default.
- W4377286932 hasConcept C2780659211 @default.
- W4377286932 hasConcept C2781101838 @default.
- W4377286932 hasConcept C35817400 @default.
- W4377286932 hasConcept C46293882 @default.
- W4377286932 hasConcept C59235061 @default.
- W4377286932 hasConcept C6494504 @default.
- W4377286932 hasConcept C6648577 @default.
- W4377286932 hasConcept C78762247 @default.
- W4377286932 hasConcept C8058405 @default.
- W4377286932 hasConceptScore W4377286932C105569014 @default.
- W4377286932 hasConceptScore W4377286932C114873805 @default.
- W4377286932 hasConceptScore W4377286932C127313418 @default.
- W4377286932 hasConceptScore W4377286932C14641988 @default.
- W4377286932 hasConceptScore W4377286932C17409809 @default.
- W4377286932 hasConceptScore W4377286932C187320778 @default.
- W4377286932 hasConceptScore W4377286932C191897082 @default.