Matches in SemOpenAlex for { <https://semopenalex.org/work/W4377290400> ?p ?o ?g. }
- W4377290400 endingPage "12314" @default.
- W4377290400 startingPage "12305" @default.
- W4377290400 abstract "Non-destructive, fast, and accurate methods of dating are highly desirable for many heritage objects. Here, we present and critically evaluate the use of near-infrared (NIR) spectroscopic data combined with three supervised machine learning methods to predict the publication year of paper books dated between 1851 and 2000. These methods provide different accuracies; however, we demonstrate that the underlying processes refer to common spectral features. Regardless of the machine learning method used, the most informative wavelength ranges can be associated with C-H and O-H stretching first overtone, typical of the cellulose structure, and N-H stretching first overtone from amide/protein structures. We find that the expected influence of degradation on the accuracy of prediction is not meaningful. The variance-bias decomposition of the reducible error reveals some differences among the three machine learning methods. Our results show that two out of the three methods allow predictions of publication dates in the period 1851-2000 from NIR spectroscopic data with an unprecedented accuracy of up to 2 years, better than any other non-destructive method applied to a real heritage collection." @default.
- W4377290400 created "2023-05-23" @default.
- W4377290400 creator A5025903749 @default.
- W4377290400 creator A5041760167 @default.
- W4377290400 creator A5052334999 @default.
- W4377290400 creator A5055619697 @default.
- W4377290400 creator A5057311529 @default.
- W4377290400 creator A5090870052 @default.
- W4377290400 date "2023-05-22" @default.
- W4377290400 modified "2023-10-14" @default.
- W4377290400 title "Near-Infrared Spectroscopy and Machine Learning for Accurate Dating of Historical Books" @default.
- W4377290400 cites W1094931 @default.
- W4377290400 cites W1480175919 @default.
- W4377290400 cites W1978455757 @default.
- W4377290400 cites W1981682195 @default.
- W4377290400 cites W1989853602 @default.
- W4377290400 cites W2000162653 @default.
- W4377290400 cites W2012358846 @default.
- W4377290400 cites W2021754455 @default.
- W4377290400 cites W2037835842 @default.
- W4377290400 cites W2048796030 @default.
- W4377290400 cites W2058032677 @default.
- W4377290400 cites W2069510849 @default.
- W4377290400 cites W2087111569 @default.
- W4377290400 cites W2092221437 @default.
- W4377290400 cites W2094267381 @default.
- W4377290400 cites W2109606373 @default.
- W4377290400 cites W2154808242 @default.
- W4377290400 cites W2156665896 @default.
- W4377290400 cites W2167101736 @default.
- W4377290400 cites W2212667696 @default.
- W4377290400 cites W2315970277 @default.
- W4377290400 cites W2336618373 @default.
- W4377290400 cites W2342458195 @default.
- W4377290400 cites W2765192280 @default.
- W4377290400 cites W2787894218 @default.
- W4377290400 cites W2799365888 @default.
- W4377290400 cites W2802594605 @default.
- W4377290400 cites W2809343789 @default.
- W4377290400 cites W2884430236 @default.
- W4377290400 cites W2911863681 @default.
- W4377290400 cites W3006473615 @default.
- W4377290400 cites W3016446864 @default.
- W4377290400 cites W3017348882 @default.
- W4377290400 cites W3021192614 @default.
- W4377290400 cites W3035121348 @default.
- W4377290400 cites W3041580073 @default.
- W4377290400 cites W3042896159 @default.
- W4377290400 cites W3082886575 @default.
- W4377290400 cites W3095649194 @default.
- W4377290400 cites W3104073206 @default.
- W4377290400 cites W3112923119 @default.
- W4377290400 cites W3163020563 @default.
- W4377290400 cites W3165193028 @default.
- W4377290400 cites W3212560715 @default.
- W4377290400 cites W4205408098 @default.
- W4377290400 cites W4211023471 @default.
- W4377290400 cites W4214817246 @default.
- W4377290400 cites W4220999588 @default.
- W4377290400 cites W4231877470 @default.
- W4377290400 cites W4281390612 @default.
- W4377290400 cites W4310602585 @default.
- W4377290400 cites W3188873826 @default.
- W4377290400 doi "https://doi.org/10.1021/jacs.3c02835" @default.
- W4377290400 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/37216468" @default.
- W4377290400 hasPublicationYear "2023" @default.
- W4377290400 type Work @default.
- W4377290400 citedByCount "2" @default.
- W4377290400 countsByYear W43772904002023 @default.
- W4377290400 crossrefType "journal-article" @default.
- W4377290400 hasAuthorship W4377290400A5025903749 @default.
- W4377290400 hasAuthorship W4377290400A5041760167 @default.
- W4377290400 hasAuthorship W4377290400A5052334999 @default.
- W4377290400 hasAuthorship W4377290400A5055619697 @default.
- W4377290400 hasAuthorship W4377290400A5057311529 @default.
- W4377290400 hasAuthorship W4377290400A5090870052 @default.
- W4377290400 hasBestOaLocation W43772904001 @default.
- W4377290400 hasConcept C119857082 @default.
- W4377290400 hasConcept C120665830 @default.
- W4377290400 hasConcept C121332964 @default.
- W4377290400 hasConcept C1276947 @default.
- W4377290400 hasConcept C153180895 @default.
- W4377290400 hasConcept C153642686 @default.
- W4377290400 hasConcept C154945302 @default.
- W4377290400 hasConcept C158355884 @default.
- W4377290400 hasConcept C178790620 @default.
- W4377290400 hasConcept C185592680 @default.
- W4377290400 hasConcept C32891209 @default.
- W4377290400 hasConcept C38615331 @default.
- W4377290400 hasConcept C41008148 @default.
- W4377290400 hasConcept C43571822 @default.
- W4377290400 hasConcept C4839761 @default.
- W4377290400 hasConcept C62520636 @default.
- W4377290400 hasConcept C6260449 @default.
- W4377290400 hasConceptScore W4377290400C119857082 @default.
- W4377290400 hasConceptScore W4377290400C120665830 @default.
- W4377290400 hasConceptScore W4377290400C121332964 @default.
- W4377290400 hasConceptScore W4377290400C1276947 @default.