Matches in SemOpenAlex for { <https://semopenalex.org/work/W4377291223> ?p ?o ?g. }
- W4377291223 endingPage "2392" @default.
- W4377291223 startingPage "2392" @default.
- W4377291223 abstract "A common issue with X-ray examinations (XE) is the erroneous quality classification of the XE, implying that the process needs to be repeated, thus delaying the diagnostic assessment of the XE and increasing the amount of radiation the patient receives. The authors propose a system for automatic quality classification of XE based on convolutional neural networks (CNN) that would simplify this process and significantly decrease erroneous quality classification. The data used for CNN training consist of 4000 knee images obtained via radiography procedure (KXE) in total, with 2000 KXE labeled as acceptable and 2000 as unacceptable. Additionally, half of the KXE belonging to each label are right knees and left knees. Due to the sensitivity to image orientation of some CNNs, three approaches are discussed: (1) Left-right-knee (LRK) classifies XE based just on their label, without taking into consideration their orientation; (2) Orientation discriminator (OD) for the left knee (LK) and right knee (RK) analyses images based on their orientation and inserts them into two separate models regarding orientation; (3) Orientation discriminator combined with knee XRs flipped to the left or right (OD-LFK)/OD-RFK trains the models with all images being horizontally flipped to the same orientation and uses the aforementioned OD to determine whether the image needs to be flipped or not. All the approaches are tested with five CNNs (AlexNet, ResNet50, ResNet101, ResNet152, and Xception), with grid search and k-fold cross-validation. The best results are achieved using the OD-RFK hybrid approach with the Xception network architecture as the classifier and ResNet152 as the OD, with an average AUC of 0.97 (±0.01)." @default.
- W4377291223 created "2023-05-23" @default.
- W4377291223 creator A5005957890 @default.
- W4377291223 creator A5036664813 @default.
- W4377291223 creator A5037365647 @default.
- W4377291223 creator A5045003544 @default.
- W4377291223 creator A5053211972 @default.
- W4377291223 creator A5054098756 @default.
- W4377291223 date "2023-05-22" @default.
- W4377291223 modified "2023-09-28" @default.
- W4377291223 title "Quality Assessment Assistance of Lateral Knee X-rays: A Hybrid Convolutional Neural Network Approach" @default.
- W4377291223 cites W1989013880 @default.
- W4377291223 cites W2113886593 @default.
- W4377291223 cites W2122296646 @default.
- W4377291223 cites W2158283933 @default.
- W4377291223 cites W2342164931 @default.
- W4377291223 cites W2531409750 @default.
- W4377291223 cites W2752010668 @default.
- W4377291223 cites W2768489488 @default.
- W4377291223 cites W2787894218 @default.
- W4377291223 cites W2914111267 @default.
- W4377291223 cites W2940342632 @default.
- W4377291223 cites W2946391413 @default.
- W4377291223 cites W2960023330 @default.
- W4377291223 cites W2984841888 @default.
- W4377291223 cites W3003544448 @default.
- W4377291223 cites W3011651912 @default.
- W4377291223 cites W3014047622 @default.
- W4377291223 cites W3017372248 @default.
- W4377291223 cites W3019479765 @default.
- W4377291223 cites W3021817155 @default.
- W4377291223 cites W3030738016 @default.
- W4377291223 cites W3036908895 @default.
- W4377291223 cites W3045988504 @default.
- W4377291223 cites W3048749423 @default.
- W4377291223 cites W3101300275 @default.
- W4377291223 cites W3107688684 @default.
- W4377291223 cites W3120186428 @default.
- W4377291223 cites W3127641755 @default.
- W4377291223 cites W3136152190 @default.
- W4377291223 cites W3184320593 @default.
- W4377291223 cites W3184385036 @default.
- W4377291223 cites W3185278767 @default.
- W4377291223 cites W3192455587 @default.
- W4377291223 cites W3194768393 @default.
- W4377291223 cites W3196353935 @default.
- W4377291223 cites W3198880905 @default.
- W4377291223 cites W3201159086 @default.
- W4377291223 cites W3202849198 @default.
- W4377291223 cites W4206838127 @default.
- W4377291223 cites W4213353889 @default.
- W4377291223 cites W4319063565 @default.
- W4377291223 doi "https://doi.org/10.3390/math11102392" @default.
- W4377291223 hasPublicationYear "2023" @default.
- W4377291223 type Work @default.
- W4377291223 citedByCount "0" @default.
- W4377291223 crossrefType "journal-article" @default.
- W4377291223 hasAuthorship W4377291223A5005957890 @default.
- W4377291223 hasAuthorship W4377291223A5036664813 @default.
- W4377291223 hasAuthorship W4377291223A5037365647 @default.
- W4377291223 hasAuthorship W4377291223A5045003544 @default.
- W4377291223 hasAuthorship W4377291223A5053211972 @default.
- W4377291223 hasAuthorship W4377291223A5054098756 @default.
- W4377291223 hasBestOaLocation W43772912231 @default.
- W4377291223 hasConcept C115961682 @default.
- W4377291223 hasConcept C153180895 @default.
- W4377291223 hasConcept C154945302 @default.
- W4377291223 hasConcept C16345878 @default.
- W4377291223 hasConcept C2524010 @default.
- W4377291223 hasConcept C2779803651 @default.
- W4377291223 hasConcept C2989005 @default.
- W4377291223 hasConcept C31972630 @default.
- W4377291223 hasConcept C33923547 @default.
- W4377291223 hasConcept C41008148 @default.
- W4377291223 hasConcept C55020928 @default.
- W4377291223 hasConcept C71924100 @default.
- W4377291223 hasConcept C76155785 @default.
- W4377291223 hasConcept C81363708 @default.
- W4377291223 hasConcept C94915269 @default.
- W4377291223 hasConceptScore W4377291223C115961682 @default.
- W4377291223 hasConceptScore W4377291223C153180895 @default.
- W4377291223 hasConceptScore W4377291223C154945302 @default.
- W4377291223 hasConceptScore W4377291223C16345878 @default.
- W4377291223 hasConceptScore W4377291223C2524010 @default.
- W4377291223 hasConceptScore W4377291223C2779803651 @default.
- W4377291223 hasConceptScore W4377291223C2989005 @default.
- W4377291223 hasConceptScore W4377291223C31972630 @default.
- W4377291223 hasConceptScore W4377291223C33923547 @default.
- W4377291223 hasConceptScore W4377291223C41008148 @default.
- W4377291223 hasConceptScore W4377291223C55020928 @default.
- W4377291223 hasConceptScore W4377291223C71924100 @default.
- W4377291223 hasConceptScore W4377291223C76155785 @default.
- W4377291223 hasConceptScore W4377291223C81363708 @default.
- W4377291223 hasConceptScore W4377291223C94915269 @default.
- W4377291223 hasIssue "10" @default.
- W4377291223 hasLocation W43772912231 @default.
- W4377291223 hasOpenAccess W4377291223 @default.
- W4377291223 hasPrimaryLocation W43772912231 @default.