Matches in SemOpenAlex for { <https://semopenalex.org/work/W4377291281> ?p ?o ?g. }
- W4377291281 abstract "The microbiome plays a key role in the health of the human body. Interest often lies in finding features of the microbiome, alongside other covariates, which are associated with a phenotype of interest. One important property of microbiome data, which is often overlooked, is its compositionality as it can only provide information about the relative abundance of its constituting components. Typically, these proportions vary by several orders of magnitude in datasets of high dimensions. To address these challenges we develop a Bayesian hierarchical linear log-contrast model which is estimated by mean field Monte-Carlo co-ordinate ascent variational inference (CAVI-MC) and easily scales to high dimensional data. We use novel priors which account for the large differences in scale and constrained parameter space associated with the compositional covariates. A reversible jump Monte Carlo Markov chain guided by the data through univariate approximations of the variational posterior probability of inclusion, with proposal parameters informed by approximating variational densities via auxiliary parameters, is used to estimate intractable marginal expectations. We demonstrate that our proposed Bayesian method performs favourably against existing frequentist state of the art compositional data analysis methods. We then apply the CAVI-MC to the analysis of real data exploring the relationship of the gut microbiome to body mass index." @default.
- W4377291281 created "2023-05-23" @default.
- W4377291281 creator A5003021951 @default.
- W4377291281 creator A5012910153 @default.
- W4377291281 creator A5016072993 @default.
- W4377291281 creator A5016429599 @default.
- W4377291281 creator A5019621136 @default.
- W4377291281 creator A5025438722 @default.
- W4377291281 creator A5056485188 @default.
- W4377291281 creator A5056610190 @default.
- W4377291281 creator A5061012781 @default.
- W4377291281 creator A5062197976 @default.
- W4377291281 creator A5086492859 @default.
- W4377291281 date "2023-05-22" @default.
- W4377291281 modified "2023-10-06" @default.
- W4377291281 title "Bayesian compositional regression with microbiome features via variational inference" @default.
- W4377291281 cites W1483883706 @default.
- W4377291281 cites W1516111018 @default.
- W4377291281 cites W1603353793 @default.
- W4377291281 cites W1870389819 @default.
- W4377291281 cites W1975083447 @default.
- W4377291281 cites W1978431628 @default.
- W4377291281 cites W1979966476 @default.
- W4377291281 cites W1982652137 @default.
- W4377291281 cites W2007069447 @default.
- W4377291281 cites W2012551717 @default.
- W4377291281 cites W2029607409 @default.
- W4377291281 cites W2037701117 @default.
- W4377291281 cites W2059424427 @default.
- W4377291281 cites W2061309172 @default.
- W4377291281 cites W2078112764 @default.
- W4377291281 cites W2098163072 @default.
- W4377291281 cites W2106706098 @default.
- W4377291281 cites W2120288828 @default.
- W4377291281 cites W2124473446 @default.
- W4377291281 cites W2135046866 @default.
- W4377291281 cites W2136500114 @default.
- W4377291281 cites W2162888823 @default.
- W4377291281 cites W2163903604 @default.
- W4377291281 cites W2228687373 @default.
- W4377291281 cites W2241327023 @default.
- W4377291281 cites W2498698309 @default.
- W4377291281 cites W2769542288 @default.
- W4377291281 cites W2805955114 @default.
- W4377291281 cites W2807194798 @default.
- W4377291281 cites W2884935659 @default.
- W4377291281 cites W2950746887 @default.
- W4377291281 cites W2952564192 @default.
- W4377291281 cites W2962733802 @default.
- W4377291281 cites W2963899886 @default.
- W4377291281 cites W3006021115 @default.
- W4377291281 cites W3033182537 @default.
- W4377291281 cites W3036020392 @default.
- W4377291281 cites W3042363243 @default.
- W4377291281 cites W3084798687 @default.
- W4377291281 cites W3089053458 @default.
- W4377291281 cites W3099090856 @default.
- W4377291281 cites W3100253669 @default.
- W4377291281 cites W3101380508 @default.
- W4377291281 cites W3102526540 @default.
- W4377291281 cites W3104819538 @default.
- W4377291281 cites W3127660813 @default.
- W4377291281 cites W4205364647 @default.
- W4377291281 cites W4236474156 @default.
- W4377291281 cites W4240395197 @default.
- W4377291281 cites W4299542564 @default.
- W4377291281 cites W603679014 @default.
- W4377291281 doi "https://doi.org/10.1186/s12859-023-05219-x" @default.
- W4377291281 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/37217852" @default.
- W4377291281 hasPublicationYear "2023" @default.
- W4377291281 type Work @default.
- W4377291281 citedByCount "0" @default.
- W4377291281 crossrefType "journal-article" @default.
- W4377291281 hasAuthorship W4377291281A5003021951 @default.
- W4377291281 hasAuthorship W4377291281A5012910153 @default.
- W4377291281 hasAuthorship W4377291281A5016072993 @default.
- W4377291281 hasAuthorship W4377291281A5016429599 @default.
- W4377291281 hasAuthorship W4377291281A5019621136 @default.
- W4377291281 hasAuthorship W4377291281A5025438722 @default.
- W4377291281 hasAuthorship W4377291281A5056485188 @default.
- W4377291281 hasAuthorship W4377291281A5056610190 @default.
- W4377291281 hasAuthorship W4377291281A5061012781 @default.
- W4377291281 hasAuthorship W4377291281A5062197976 @default.
- W4377291281 hasAuthorship W4377291281A5086492859 @default.
- W4377291281 hasBestOaLocation W43772912811 @default.
- W4377291281 hasConcept C105795698 @default.
- W4377291281 hasConcept C107673813 @default.
- W4377291281 hasConcept C111350023 @default.
- W4377291281 hasConcept C119043178 @default.
- W4377291281 hasConcept C119857082 @default.
- W4377291281 hasConcept C143121216 @default.
- W4377291281 hasConcept C154945302 @default.
- W4377291281 hasConcept C160234255 @default.
- W4377291281 hasConcept C161584116 @default.
- W4377291281 hasConcept C162376815 @default.
- W4377291281 hasConcept C177769412 @default.
- W4377291281 hasConcept C199163554 @default.
- W4377291281 hasConcept C2776214188 @default.
- W4377291281 hasConcept C33923547 @default.
- W4377291281 hasConcept C41008148 @default.