Matches in SemOpenAlex for { <https://semopenalex.org/work/W4377292364> ?p ?o ?g. }
- W4377292364 abstract "Deep generative chemistry models emerge as powerful tools to expedite drug discovery. However, the immense size and complexity of the structural space of all possible drug-like molecules pose significant obstacles, which could be overcome with hybrid architectures combining quantum computers with deep classical networks. As the first step toward this goal, we built a compact discrete variational autoencoder (DVAE) with a Restricted Boltzmann Machine (RBM) of reduced size in its latent layer. The size of the proposed model was small enough to fit on a state-of-the-art D-Wave quantum annealer and allowed training on a subset of the ChEMBL dataset of biologically active compounds. Finally, we generated 2331 novel chemical structures with medicinal chemistry and synthetic accessibility properties in the ranges typical for molecules from ChEMBL. The presented results demonstrate the feasibility of using already existing or soon-to-be-available quantum computing devices as testbeds for future drug discovery applications." @default.
- W4377292364 created "2023-05-23" @default.
- W4377292364 creator A5000349102 @default.
- W4377292364 creator A5022661701 @default.
- W4377292364 creator A5026625591 @default.
- W4377292364 creator A5072682251 @default.
- W4377292364 creator A5085869644 @default.
- W4377292364 date "2023-05-22" @default.
- W4377292364 modified "2023-09-29" @default.
- W4377292364 title "Hybrid quantum-classical machine learning for generative chemistry and drug design" @default.
- W4377292364 cites W1513873506 @default.
- W4377292364 cites W1975147762 @default.
- W4377292364 cites W2023818227 @default.
- W4377292364 cites W2024860775 @default.
- W4377292364 cites W2034549041 @default.
- W4377292364 cites W2040792108 @default.
- W4377292364 cites W2096541451 @default.
- W4377292364 cites W2116825644 @default.
- W4377292364 cites W2151697120 @default.
- W4377292364 cites W2160592148 @default.
- W4377292364 cites W2177317049 @default.
- W4377292364 cites W2558999090 @default.
- W4377292364 cites W2559394418 @default.
- W4377292364 cites W2752623698 @default.
- W4377292364 cites W2767121113 @default.
- W4377292364 cites W2769423117 @default.
- W4377292364 cites W2781738013 @default.
- W4377292364 cites W2798945316 @default.
- W4377292364 cites W2798967590 @default.
- W4377292364 cites W2889126882 @default.
- W4377292364 cites W2906133437 @default.
- W4377292364 cites W2951559648 @default.
- W4377292364 cites W2953128081 @default.
- W4377292364 cites W2971690404 @default.
- W4377292364 cites W2985931096 @default.
- W4377292364 cites W3021942898 @default.
- W4377292364 cites W3045928028 @default.
- W4377292364 cites W3094595762 @default.
- W4377292364 cites W3098269892 @default.
- W4377292364 cites W3098768946 @default.
- W4377292364 cites W3100806676 @default.
- W4377292364 cites W3101549158 @default.
- W4377292364 cites W3105590657 @default.
- W4377292364 cites W3105950948 @default.
- W4377292364 cites W3116865743 @default.
- W4377292364 cites W3122406616 @default.
- W4377292364 cites W3129014787 @default.
- W4377292364 cites W3133092723 @default.
- W4377292364 cites W3193478398 @default.
- W4377292364 cites W3196492698 @default.
- W4377292364 cites W3210813272 @default.
- W4377292364 cites W4206566734 @default.
- W4377292364 doi "https://doi.org/10.1038/s41598-023-32703-4" @default.
- W4377292364 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/37217521" @default.
- W4377292364 hasPublicationYear "2023" @default.
- W4377292364 type Work @default.
- W4377292364 citedByCount "1" @default.
- W4377292364 countsByYear W43772923642023 @default.
- W4377292364 crossrefType "journal-article" @default.
- W4377292364 hasAuthorship W4377292364A5000349102 @default.
- W4377292364 hasAuthorship W4377292364A5022661701 @default.
- W4377292364 hasAuthorship W4377292364A5026625591 @default.
- W4377292364 hasAuthorship W4377292364A5072682251 @default.
- W4377292364 hasAuthorship W4377292364A5085869644 @default.
- W4377292364 hasBestOaLocation W43772923641 @default.
- W4377292364 hasConcept C101738243 @default.
- W4377292364 hasConcept C108583219 @default.
- W4377292364 hasConcept C119857082 @default.
- W4377292364 hasConcept C121332964 @default.
- W4377292364 hasConcept C154945302 @default.
- W4377292364 hasConcept C167966045 @default.
- W4377292364 hasConcept C178790620 @default.
- W4377292364 hasConcept C185592680 @default.
- W4377292364 hasConcept C192576344 @default.
- W4377292364 hasConcept C199354608 @default.
- W4377292364 hasConcept C22994065 @default.
- W4377292364 hasConcept C2991951333 @default.
- W4377292364 hasConcept C32909587 @default.
- W4377292364 hasConcept C39890363 @default.
- W4377292364 hasConcept C41008148 @default.
- W4377292364 hasConcept C55493867 @default.
- W4377292364 hasConcept C62520636 @default.
- W4377292364 hasConcept C63222358 @default.
- W4377292364 hasConcept C74187038 @default.
- W4377292364 hasConcept C80444323 @default.
- W4377292364 hasConcept C84114770 @default.
- W4377292364 hasConcept C93275456 @default.
- W4377292364 hasConcept C99726746 @default.
- W4377292364 hasConceptScore W4377292364C101738243 @default.
- W4377292364 hasConceptScore W4377292364C108583219 @default.
- W4377292364 hasConceptScore W4377292364C119857082 @default.
- W4377292364 hasConceptScore W4377292364C121332964 @default.
- W4377292364 hasConceptScore W4377292364C154945302 @default.
- W4377292364 hasConceptScore W4377292364C167966045 @default.
- W4377292364 hasConceptScore W4377292364C178790620 @default.
- W4377292364 hasConceptScore W4377292364C185592680 @default.
- W4377292364 hasConceptScore W4377292364C192576344 @default.
- W4377292364 hasConceptScore W4377292364C199354608 @default.
- W4377292364 hasConceptScore W4377292364C22994065 @default.
- W4377292364 hasConceptScore W4377292364C2991951333 @default.