Matches in SemOpenAlex for { <https://semopenalex.org/work/W4377294766> ?p ?o ?g. }
- W4377294766 endingPage "6290" @default.
- W4377294766 startingPage "6290" @default.
- W4377294766 abstract "Gross primary productivity (GPP) is an important indicator in research on carbon cycling in terrestrial ecosystems. High-accuracy GPP prediction is crucial for ecosystem health and climate change assessments. We developed a site-level GPP prediction method based on the GeoMAN model, which was able to extract spatiotemporal features and fuse external environmental factors to predict GPP on the Tibetan Plateau. We evaluated four models’ behavior—Random Forest (RF), Support Vector Machine (SVM), Deep Belief Network (DBN), and GeoMAN—in predicting GPP at nine flux observation sites on the Tibetan Plateau. The GeoMAN model achieved the best results (R2 = 0.870, RMSE = 0.788 g Cm−2 d−1, MAE = 0.440 g Cm−2 d−1). Distance and vegetation type of the flux sites influenced GPP prediction, with the latter being more significant. The different grassland vegetation types exhibited different sensitivity to environmental factors (Ta, PAR, EVI, NDVI, and LSWI) for GPP prediction. Among them, the site located in the alpine swamp meadow was insensitive to changes in environmental factors; the GPP prediction accuracy of the site located in the alpine meadow steppe decreased significantly with the changes in environmental factors; and the GPP prediction accuracy of the site located in the alpine Kobresia meadow also varied with environmental factor changes, but to a lesser extent than the former. This study provides a good reference that deep learning model is able to achieve good accuracy in GPP simulation when considers spatial, temporal, and environmental factors, and the judgement made by deep learning model conforms to basic knowledge in the relevant field." @default.
- W4377294766 created "2023-05-23" @default.
- W4377294766 creator A5000867897 @default.
- W4377294766 creator A5012495474 @default.
- W4377294766 creator A5033462059 @default.
- W4377294766 creator A5057791401 @default.
- W4377294766 creator A5058829648 @default.
- W4377294766 creator A5075077562 @default.
- W4377294766 creator A5081101216 @default.
- W4377294766 creator A5082690297 @default.
- W4377294766 creator A5085476174 @default.
- W4377294766 date "2023-05-21" @default.
- W4377294766 modified "2023-10-16" @default.
- W4377294766 title "Spatial–Temporal Correlation Considering Environmental Factor Fusion for Estimating Gross Primary Productivity in Tibetan Grasslands" @default.
- W4377294766 cites W1057605271 @default.
- W4377294766 cites W1963561820 @default.
- W4377294766 cites W1969801270 @default.
- W4377294766 cites W2025424387 @default.
- W4377294766 cites W2036682095 @default.
- W4377294766 cites W2052648234 @default.
- W4377294766 cites W2080849056 @default.
- W4377294766 cites W2113410727 @default.
- W4377294766 cites W2116673487 @default.
- W4377294766 cites W2129703026 @default.
- W4377294766 cites W2131311436 @default.
- W4377294766 cites W2134116176 @default.
- W4377294766 cites W2142967622 @default.
- W4377294766 cites W2147423506 @default.
- W4377294766 cites W2148781507 @default.
- W4377294766 cites W2155152860 @default.
- W4377294766 cites W2158897782 @default.
- W4377294766 cites W2164574849 @default.
- W4377294766 cites W2164706666 @default.
- W4377294766 cites W2597128531 @default.
- W4377294766 cites W2776094521 @default.
- W4377294766 cites W2793887838 @default.
- W4377294766 cites W2808535700 @default.
- W4377294766 cites W3010293057 @default.
- W4377294766 cites W3086051247 @default.
- W4377294766 cites W3174075456 @default.
- W4377294766 cites W4207048225 @default.
- W4377294766 cites W4281699074 @default.
- W4377294766 cites W4287877610 @default.
- W4377294766 cites W4292825846 @default.
- W4377294766 cites W4361027245 @default.
- W4377294766 doi "https://doi.org/10.3390/app13106290" @default.
- W4377294766 hasPublicationYear "2023" @default.
- W4377294766 type Work @default.
- W4377294766 citedByCount "2" @default.
- W4377294766 countsByYear W43772947662023 @default.
- W4377294766 crossrefType "journal-article" @default.
- W4377294766 hasAuthorship W4377294766A5000867897 @default.
- W4377294766 hasAuthorship W4377294766A5012495474 @default.
- W4377294766 hasAuthorship W4377294766A5033462059 @default.
- W4377294766 hasAuthorship W4377294766A5057791401 @default.
- W4377294766 hasAuthorship W4377294766A5058829648 @default.
- W4377294766 hasAuthorship W4377294766A5075077562 @default.
- W4377294766 hasAuthorship W4377294766A5081101216 @default.
- W4377294766 hasAuthorship W4377294766A5082690297 @default.
- W4377294766 hasAuthorship W4377294766A5085476174 @default.
- W4377294766 hasBestOaLocation W43772947661 @default.
- W4377294766 hasConcept C100970517 @default.
- W4377294766 hasConcept C110872660 @default.
- W4377294766 hasConcept C119857082 @default.
- W4377294766 hasConcept C142724271 @default.
- W4377294766 hasConcept C169258074 @default.
- W4377294766 hasConcept C18903297 @default.
- W4377294766 hasConcept C205649164 @default.
- W4377294766 hasConcept C24717449 @default.
- W4377294766 hasConcept C2776133958 @default.
- W4377294766 hasConcept C39432304 @default.
- W4377294766 hasConcept C41008148 @default.
- W4377294766 hasConcept C65680412 @default.
- W4377294766 hasConcept C71924100 @default.
- W4377294766 hasConcept C86803240 @default.
- W4377294766 hasConceptScore W4377294766C100970517 @default.
- W4377294766 hasConceptScore W4377294766C110872660 @default.
- W4377294766 hasConceptScore W4377294766C119857082 @default.
- W4377294766 hasConceptScore W4377294766C142724271 @default.
- W4377294766 hasConceptScore W4377294766C169258074 @default.
- W4377294766 hasConceptScore W4377294766C18903297 @default.
- W4377294766 hasConceptScore W4377294766C205649164 @default.
- W4377294766 hasConceptScore W4377294766C24717449 @default.
- W4377294766 hasConceptScore W4377294766C2776133958 @default.
- W4377294766 hasConceptScore W4377294766C39432304 @default.
- W4377294766 hasConceptScore W4377294766C41008148 @default.
- W4377294766 hasConceptScore W4377294766C65680412 @default.
- W4377294766 hasConceptScore W4377294766C71924100 @default.
- W4377294766 hasConceptScore W4377294766C86803240 @default.
- W4377294766 hasFunder F4320335777 @default.
- W4377294766 hasIssue "10" @default.
- W4377294766 hasLocation W43772947661 @default.
- W4377294766 hasOpenAccess W4377294766 @default.
- W4377294766 hasPrimaryLocation W43772947661 @default.
- W4377294766 hasRelatedWork W1993205666 @default.
- W4377294766 hasRelatedWork W2013378337 @default.
- W4377294766 hasRelatedWork W2058145616 @default.
- W4377294766 hasRelatedWork W2086521979 @default.