Matches in SemOpenAlex for { <https://semopenalex.org/work/W4377299535> ?p ?o ?g. }
Showing items 1 to 97 of
97
with 100 items per page.
- W4377299535 endingPage "696" @default.
- W4377299535 startingPage "696" @default.
- W4377299535 abstract "Due to the requirement of significant manpower and material resources for the crashworthiness tests, various modelling approaches are utilized to reduce these costs. Despite being informative, finite element models still have the disadvantage of being time-consuming. A data-driven model has recently demonstrated potential in terms of computational efficiency, but it is also accompanied by challenges in collecting an amount of data. Few-shot learning is a perspective approach in addressing the problem of insufficient data in engineering. In this paper, using a novel hybrid data augmentation method, we investigate a deep-learning-based few-shot learning approach to evaluate and optimize the crashworthiness of multi-cell structures. Innovatively, we employ wide and deep neural networks to develop a surrogate model for multi-objective optimization. In comparison with the original results, the optimized result of the multi-cell structure demonstrates that the mean crushing force (Fm) and specific energy absorption (SEA) are increased by 17.1% and 30.1%, respectively, the mass decreases by 4.0%, and the optimized structure offers a significant improvement in design space. Overall, this proposed method exhibits great potential in relation to the crashworthiness analysis and optimization for multi-cell structures of the high-speed train." @default.
- W4377299535 created "2023-05-23" @default.
- W4377299535 creator A5011059454 @default.
- W4377299535 creator A5045219136 @default.
- W4377299535 creator A5046054898 @default.
- W4377299535 date "2022-08-16" @default.
- W4377299535 modified "2023-10-16" @default.
- W4377299535 title "A Few-Shot Learning-Based Crashworthiness Analysis and Optimization for Multi-Cell Structure of High-Speed Train" @default.
- W4377299535 cites W1964929730 @default.
- W4377299535 cites W1966966486 @default.
- W4377299535 cites W1967826025 @default.
- W4377299535 cites W1978697906 @default.
- W4377299535 cites W1983779316 @default.
- W4377299535 cites W1989735016 @default.
- W4377299535 cites W1996825299 @default.
- W4377299535 cites W1997625160 @default.
- W4377299535 cites W2000464984 @default.
- W4377299535 cites W2001192468 @default.
- W4377299535 cites W2022485595 @default.
- W4377299535 cites W2042950564 @default.
- W4377299535 cites W2044536945 @default.
- W4377299535 cites W2078606250 @default.
- W4377299535 cites W2093998883 @default.
- W4377299535 cites W2108140490 @default.
- W4377299535 cites W2201252508 @default.
- W4377299535 cites W2238796853 @default.
- W4377299535 cites W2475334473 @default.
- W4377299535 cites W2549067832 @default.
- W4377299535 cites W2554566081 @default.
- W4377299535 cites W2608873781 @default.
- W4377299535 cites W2612215913 @default.
- W4377299535 cites W2618476946 @default.
- W4377299535 cites W2766135644 @default.
- W4377299535 cites W2883543139 @default.
- W4377299535 cites W2911893501 @default.
- W4377299535 cites W2944817526 @default.
- W4377299535 cites W2945138614 @default.
- W4377299535 cites W2987466992 @default.
- W4377299535 cites W2999309480 @default.
- W4377299535 cites W3034942609 @default.
- W4377299535 cites W3035669615 @default.
- W4377299535 cites W3035982802 @default.
- W4377299535 cites W3082345450 @default.
- W4377299535 cites W3131937156 @default.
- W4377299535 doi "https://doi.org/10.3390/machines10080696" @default.
- W4377299535 hasPublicationYear "2022" @default.
- W4377299535 type Work @default.
- W4377299535 citedByCount "2" @default.
- W4377299535 countsByYear W43772995352023 @default.
- W4377299535 crossrefType "journal-article" @default.
- W4377299535 hasAuthorship W4377299535A5011059454 @default.
- W4377299535 hasAuthorship W4377299535A5045219136 @default.
- W4377299535 hasAuthorship W4377299535A5046054898 @default.
- W4377299535 hasBestOaLocation W43772995351 @default.
- W4377299535 hasConcept C119857082 @default.
- W4377299535 hasConcept C12713177 @default.
- W4377299535 hasConcept C127413603 @default.
- W4377299535 hasConcept C131675550 @default.
- W4377299535 hasConcept C135628077 @default.
- W4377299535 hasConcept C154945302 @default.
- W4377299535 hasConcept C2779240047 @default.
- W4377299535 hasConcept C41008148 @default.
- W4377299535 hasConcept C44154836 @default.
- W4377299535 hasConcept C50644808 @default.
- W4377299535 hasConcept C66938386 @default.
- W4377299535 hasConceptScore W4377299535C119857082 @default.
- W4377299535 hasConceptScore W4377299535C12713177 @default.
- W4377299535 hasConceptScore W4377299535C127413603 @default.
- W4377299535 hasConceptScore W4377299535C131675550 @default.
- W4377299535 hasConceptScore W4377299535C135628077 @default.
- W4377299535 hasConceptScore W4377299535C154945302 @default.
- W4377299535 hasConceptScore W4377299535C2779240047 @default.
- W4377299535 hasConceptScore W4377299535C41008148 @default.
- W4377299535 hasConceptScore W4377299535C44154836 @default.
- W4377299535 hasConceptScore W4377299535C50644808 @default.
- W4377299535 hasConceptScore W4377299535C66938386 @default.
- W4377299535 hasIssue "8" @default.
- W4377299535 hasLocation W43772995351 @default.
- W4377299535 hasLocation W43772995352 @default.
- W4377299535 hasOpenAccess W4377299535 @default.
- W4377299535 hasPrimaryLocation W43772995351 @default.
- W4377299535 hasRelatedWork W2030240373 @default.
- W4377299535 hasRelatedWork W2079682965 @default.
- W4377299535 hasRelatedWork W2088259851 @default.
- W4377299535 hasRelatedWork W2089870231 @default.
- W4377299535 hasRelatedWork W2114865694 @default.
- W4377299535 hasRelatedWork W2177344382 @default.
- W4377299535 hasRelatedWork W2323124088 @default.
- W4377299535 hasRelatedWork W2365102018 @default.
- W4377299535 hasRelatedWork W2572509830 @default.
- W4377299535 hasRelatedWork W4236667378 @default.
- W4377299535 hasVolume "10" @default.
- W4377299535 isParatext "false" @default.
- W4377299535 isRetracted "false" @default.
- W4377299535 workType "article" @default.