Matches in SemOpenAlex for { <https://semopenalex.org/work/W4377695384> ?p ?o ?g. }
- W4377695384 endingPage "102138" @default.
- W4377695384 startingPage "102138" @default.
- W4377695384 abstract "Increased concentrations of Total Phosphorus (TP) in freshwater systems lead to eutrophication and can contribute to a wide range of environmental effects. In the modern era, water quality models have increasingly been used globally for the development of management scenarios with the aim of reducing the eutrophication risk. However, the accuracy of these models is limited by the quality of the boundary conditions forcing data, namely TP concentration datasets. In this study, a novel methodology is proposed to improve machine learning prediction accuracy in the modeling of river TP concentration forced with small input training datasets. These models can then be used to increase the quality and consistency of the TP concentration datasets required to force water quality models. This new methodology relies on the generation of 100 new training datasets from the raw training datasets of input predictors through the implementation of an over/undersampling technique. The modeling approach used in this study was supported by the application of ten machine learning algorithms to estimate the TP concentration values in 22 rivers located in Portugal. The modeling approach also included an input feature importance evaluation, as well as model hyperparameter optimization. In general terms, the Extreme Gradient Boosting (XGBoost) and Support Vector Regressor (SVR) models performed best overall, with the ensemble results recorded for both models working to increase the mean Nash-Sutcliffe efficiency (NSE) across all the areas being studied by 96% (0.01 ± 0.22 to 0.31 ± 0.32) and reduce the mean percentage bias (PBIAS) by 43% (18.47 ± 17.31 to 10.60 ± 17.40). The results of this study suggest that the solution proposed has the potential to significantly improve the modeling of TP concentration in rivers with machine learning methods, as well as providing increased scope for its application to larger training datasets and the prediction of other types of dependent variables. Hopefully, the results of this study will further add to the body of information available in this area of research and aid the development of the water management process." @default.
- W4377695384 created "2023-05-24" @default.
- W4377695384 creator A5014825426 @default.
- W4377695384 creator A5068919770 @default.
- W4377695384 date "2023-09-01" @default.
- W4377695384 modified "2023-10-16" @default.
- W4377695384 title "An integrated approach based on the correction of imbalanced small datasets and the application of machine learning algorithms to predict total phosphorus concentration in rivers" @default.
- W4377695384 cites W1485266915 @default.
- W4377695384 cites W1500435738 @default.
- W4377695384 cites W1660213354 @default.
- W4377695384 cites W1965331678 @default.
- W4377695384 cites W1965769427 @default.
- W4377695384 cites W1982048028 @default.
- W4377695384 cites W1985479415 @default.
- W4377695384 cites W1988790447 @default.
- W4377695384 cites W1989753545 @default.
- W4377695384 cites W1990471334 @default.
- W4377695384 cites W1994356050 @default.
- W4377695384 cites W2011227634 @default.
- W4377695384 cites W2018061754 @default.
- W4377695384 cites W2020266906 @default.
- W4377695384 cites W2022629346 @default.
- W4377695384 cites W2033904036 @default.
- W4377695384 cites W2035624731 @default.
- W4377695384 cites W2059698287 @default.
- W4377695384 cites W2073428999 @default.
- W4377695384 cites W2084744129 @default.
- W4377695384 cites W2139683263 @default.
- W4377695384 cites W2141895127 @default.
- W4377695384 cites W2164338383 @default.
- W4377695384 cites W2175071904 @default.
- W4377695384 cites W2219353591 @default.
- W4377695384 cites W2289152296 @default.
- W4377695384 cites W2328399833 @default.
- W4377695384 cites W2658592595 @default.
- W4377695384 cites W2854081927 @default.
- W4377695384 cites W2885097378 @default.
- W4377695384 cites W2911964244 @default.
- W4377695384 cites W2954648193 @default.
- W4377695384 cites W2968133000 @default.
- W4377695384 cites W2975261107 @default.
- W4377695384 cites W2989831060 @default.
- W4377695384 cites W2994025393 @default.
- W4377695384 cites W2999027251 @default.
- W4377695384 cites W3000599175 @default.
- W4377695384 cites W3006177262 @default.
- W4377695384 cites W3008938341 @default.
- W4377695384 cites W3088716018 @default.
- W4377695384 cites W3119620992 @default.
- W4377695384 cites W3150752008 @default.
- W4377695384 cites W3157129049 @default.
- W4377695384 cites W3168229456 @default.
- W4377695384 cites W3170039947 @default.
- W4377695384 cites W3179438754 @default.
- W4377695384 cites W3203699112 @default.
- W4377695384 cites W3209178277 @default.
- W4377695384 cites W3211982749 @default.
- W4377695384 cites W3217458307 @default.
- W4377695384 cites W4210533835 @default.
- W4377695384 cites W4211015534 @default.
- W4377695384 cites W4281740951 @default.
- W4377695384 cites W4283646338 @default.
- W4377695384 cites W4283744348 @default.
- W4377695384 cites W4285087389 @default.
- W4377695384 cites W4289313645 @default.
- W4377695384 cites W4292200325 @default.
- W4377695384 cites W4293169088 @default.
- W4377695384 cites W4295959296 @default.
- W4377695384 cites W4297456318 @default.
- W4377695384 cites W4307266384 @default.
- W4377695384 doi "https://doi.org/10.1016/j.ecoinf.2023.102138" @default.
- W4377695384 hasPublicationYear "2023" @default.
- W4377695384 type Work @default.
- W4377695384 citedByCount "1" @default.
- W4377695384 countsByYear W43776953842023 @default.
- W4377695384 crossrefType "journal-article" @default.
- W4377695384 hasAuthorship W4377695384A5014825426 @default.
- W4377695384 hasAuthorship W4377695384A5068919770 @default.
- W4377695384 hasConcept C11413529 @default.
- W4377695384 hasConcept C119857082 @default.
- W4377695384 hasConcept C12267149 @default.
- W4377695384 hasConcept C124101348 @default.
- W4377695384 hasConcept C154945302 @default.
- W4377695384 hasConcept C169258074 @default.
- W4377695384 hasConcept C18903297 @default.
- W4377695384 hasConcept C2780797713 @default.
- W4377695384 hasConcept C41008148 @default.
- W4377695384 hasConcept C70153297 @default.
- W4377695384 hasConcept C8642999 @default.
- W4377695384 hasConcept C86803240 @default.
- W4377695384 hasConceptScore W4377695384C11413529 @default.
- W4377695384 hasConceptScore W4377695384C119857082 @default.
- W4377695384 hasConceptScore W4377695384C12267149 @default.
- W4377695384 hasConceptScore W4377695384C124101348 @default.
- W4377695384 hasConceptScore W4377695384C154945302 @default.
- W4377695384 hasConceptScore W4377695384C169258074 @default.
- W4377695384 hasConceptScore W4377695384C18903297 @default.
- W4377695384 hasConceptScore W4377695384C2780797713 @default.